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Overview

Today we have two quite independent topics: Mora division and
products of projective spaces

1. Mora division

2. Products of projective spaces

3. Morphism



Mora’s division theorem

Theorem. Let > be a local monomial order and let
f1, . . . , fr ∈ K [x1, . . . , xn]. For every further element
g ∈ K [x1, . . . , xn] there exists an element u ∈ K [x1, . . . , xn] with
u(0) = 1, elements g1, . . . , gr ∈ K [x1, . . . , xn] and a remainder
h ∈ K [x1, . . . , xn] such that following holds:

1) ug = g1f1 + . . .+ gr fr + h.

2a) Lt(g) ≥ Lt(gi fi ) whenever both sides are non-zero.

2b) If h 6= 0, then Lt(h) is not divisible by any Lt(fi ).



Mora’s algorithm
Definition. Let > be a monomial order. The ecart of a non-zero
element f ∈ K [x1, . . . , xn] is

ecart(f ) = deg f − deg Lt(f ).

Algorithm.
Input. A local monomial order >, polynomials f1, . . . , fr and g
Output. A remainder h of a Mora division of g by f1, . . . , fr .

1. Set h := g and D := {f1, . . . , fr}.
2. while (h 6= 0 and D(h) := {f ∈ D | Lt(f ) divides Lt(h)} 6= ∅)

do
I Choose f ∈ D(h) with ecart(f ) minimal.
I if ecart(f ) > ecart(h), then D := D ∪ {f }.
I h := h − Lt(h)

Lt(f ) f .

3. return h.



Termination of Mora’s algorithm
We write hk and Dk for the value of h and D after k iterations of
the while loop. Let x0 be a further variable. After k iteration while
loop continues iff Lt(hk) ∈ ({Lt(f ) | f ∈ Dk} ⊂ K [x1, . . . , xn] and
hk is added to Dk iff

x
ecart(hk )
0 Lt(hk) /∈ Ik := ({xecart(f )0 Lt(f ) | f ∈ Dk}) ⊂ K [x0, x1, . . . , xn].

Since the chain of monomial ideals

I0 ⊂ I1 ⊂ . . . ⊂ Ik ⊂ . . . ⊂ K [x0, . . . , xn]

becomes stationary there exists an N such that

DN = DN+1 = DN+2 = . . .

no longer increases.
After this point we homogenize hN and the elements of DN with
x0.



Termination of Mora’s algorithm continued

f h = xdeg f0 f (x1/x0, . . . , xn/x0).

has lead term Lt(f h) = x
ecart(f )
0 Lt(f ) with respect to the

monomial order >g on K [x0, . . . , xn] defined by

xa0x
α >g xb0 x

β ⇔ deg xa0x
α > deg xb0 x

β or

deg xa0x
α = deg xb0 x

β and xα > xβ.

Since DN does not change after this point we get a sequence

(hhk)k≥N

of homogeneous elements of the same degree with lead terms

Lt(hhN) = x
ecart(hN)
0 Lt(hN) >g Lt(hhN+1) >g . . . .

After finitely many further steps the algorithm stops with an
hM = 0 or an hM with Lt(hM) /∈ ({Lt(f ) | f ∈ DN}), since there
are only finitely many monomials in K [x0, . . . , xn] of the same
degree.



Correctness of the output.
Recursively, starting with u0 = 1, g

(0)
i = 0 and h0 = g suppose

that we already have expressions

u`g = g
(`)
1 f1 + . . .+ g

(`)
r fr + h` with u`(0) = 1

for ` = 0, . . . , k − 1. Then, if the test condition for the k-th
iteration of the while loop is fulfilled, choose a polynomial f = f (k)

as in the algorithm and set

hk = hk−1 −mk f
(k) where mk =

Lt(hk−1)

Lt(f (k))
.

There are two possibilities

(a) f (k) is one of f1, . . . , fr or
(b) f (k) is one of h1, . . . , hk−1.

Thus substituting hk−1 = hk + mk f
(k) into the expression for

uk−1g we obtain the desired expression for ukg with

(a) uk = uk−1 and g
(k)
j = g

(k−1)
j + mk if f (k) = fj or

(b) uk = uk−1 + mku` for some ` and g
(k)
j = g

(k−1)
j + mkg

(`)
j ∀j



Correctness of the output continued
In both cases we have uk(0) = uk−1(0) = 1. In case (b) this
follows from

Lt(h`) > Lt(hk) = Lt(mkh`) = mk Lt(h`).

Hence 1 > mk and uk(0) = uk−1(0) + 0u`(0) = 1.

The final expression satisfies condition 2a) because the lead terms
of the hk decrease in each round of the while loop. Finally,
condition 2b) is satisfied due to the stopping condition of the while
loop.
Example. Consider g = x and f1 = x − x2 in K [x ] the Mora
algorithm proceeds as follows:

h0 = x ,D0 = {x − x2}, 1 · g = 0 · f1 + x ,

f (1) = x − x2,m1 = 1,D1 = {x − x2, x}, 1 · g = 1 · f1 + x2,

f (2) = x ,m2 = x ,D2 = D1, (1− x) · g = 1 · f1 + 0.



Products of algebraic sets

For two affine algebraic sets A ⊂ An and B ⊂ Am the product

A× B ⊂ An × Am = An+m

is simply the algebraic set defined by

(I(A) ∪ I(B)) ⊂ K [x1, . . . xn, y1, . . . ym]

where I(A) ⊂ K [x1, . . . , xn] and I(B) ⊂ K [y1, . . . , ym] are the
vanishing ideals of A and B respectively.

For projective algebraic sets the definition of a product is not so
clear. To start with, it is not a priori clear how to give Pn × Pm the
structure of an algebraic set. One uses the Segre embedding.



Segre embedding 1
Define

σn,m : Pn × Pm → PN with N = (n + 1)(m + 1)− 1

by

([a0 : . . . : am], [b0 : . . . : bn]) 7→ [a0b0 : . . . : aibj : . . . : ambn].

This is a well-defined map. For any pair of points at least one
component aibj 6= 0.
We will use variables x = x0, . . . , xn, y = y0, . . . , ym and
z = z00, . . . , z0m, z10, . . . , znm for the homogeneous coordinate
rings of Pn,Pm and PN . Moreover we call a polynomial

f =
∑

|α|=d ,|β|=e

fα,βx
αyβ ∈ K [x, y]

bihomogeneous (in x and y) of bidegree (d , e).



Segre embedding 2
Proposition. Let Σn,m ⊂ PN be the projective algebraic set
defined by the 2× 2-minors of the (n + 1)× (m + 1)-matrix (zij).
Then

σn,m : Pn × Pm → Σm,n

is a bijection which induces isomorphisms Ui × Uj
∼= Σn,m ∩ Uij on

the standard charts. Moreover Σn,m ⊂ PN is irreducible and the
ideal of 2× 2-minors coincides with the homogeneous ideal of
Σm,m.
Proof. The minor

det

(
zi1j1 zi1j2
zi2j1 zi2j2

)
vanishes on the image of σn,m because

det

(
xi1yj1 xi1yj2
xi2yj1 xi2yj2

)
= 0.

Thus the image of σm,n is contained in Σm,n.



Segre embedding 3
The points r = [1 : c01 : . . . : cnm] ∈ Σn,m ∩ U00 satisfies

cij = ci0c0j .

Thus the pair of points

(p, q) = ([1 : c10 : . . . , cn0], [1 : c01 : . . . : c0m]) ∈ U0×U0 ⊂ Pn×Pm

is the unique preimage point of r and Σn,m ∩ U00
∼= U0 × U0. The

same argument in other charts gives that σn,m : Pn × Pm → Σn,m

is bijective and gives isomorphisms Σn,m ∩ Uij
∼= Ui × Uj .

To prove that Σm,n is irreducible and that the ideal J of
2× 2-minors of (zij) is its homogeneous ideal, it suffices to prove
that J is a prime ideal.



Segre embedding 4
Consider the ring homorphism

ϕ : K [z]→ K [x, y], zij 7→ xiyj

Clearly, J ⊂ kerϕ. To prove equality we consider a reverse
lexicographic order >rlex which refines the following order on the
variables

z00 > z01 > . . . > z0m
∨ ∨ ∨
z10 > z11 > . . . > z1m
∨ ∨ ∨
...

...
...

∨ ∨ ∨
zn0 > zn1 > . . . > znm

We have

Lt(det

(
zi1j1 zi1j2
zi2j1 zi2j2

)
) = −zi2j1zi1j2

whenever i1 < i2 and j1 < j2.



Segre embedding 5
Thus the remainder of a monomial in K [z] divided by the
2× 2-minors has the form

zi1j1zi2j2 · · · zid jd with i1 ≤ i2 ≤ . . . ≤ id and j1 ≤ j2 ≤ . . . ≤ jd .

Since ϕ induces a bijection between such monomials and
bihomogeneous monomials of bidegree (d , d) we conclude that the
2× 2-minors form a Gröbner basis of kerϕ. In particular J = kerϕ
and this is a prime ideal because K [z]/ kerϕ is isomorphic to a
subring of the domain K [x, y].

Definition. We give Pn × Pm the structure of a projective variety
by identifying Pn × Pm and Σn,m.
Example. We identify P1 × P1 with the quadric

Σ1,1 = V (z00z11 − z10z01) ⊂ P3.



Hypersurface in Pn × Pm of bidegree (d , e).
Notice that the Zariski topology on Pn × Pm is finer than product
of the Zariski topologies of the factors. For example if

f =
∑

|α|=d ,|β|=e

fα,βx
αyβ ∈ K [x, y]

is a bihomogeneous polynomial of bidegree (d , e), then

V (f ) = {(a, b) ∈ Pn × Pm | f (a, b) = 0}
is an Zariski closed subset, which for general f is not closed in the
product topology. To see that V (f ) is an algebraic subset of
Pn × Pm we argue as follows: Suppose d ≥ e. Then multiplying f
with monomials yβ ∈ K [y] of degree d − e we get

(d−e+m
m

)
polynomials fyβ of bidegree (d , d), each of which is the image of a
polynomial in Fβ ∈ K [z] of degree d . V (f ) coincides with the
zero-loci of ({Fβ | |β| = d − e}) + kerϕ.

V (f ) is called a hypersurface of bidegree (d , e) in Pn × Pm.



Algebraic subsets of Pn × Pm

Definition. Let A ⊂ Pn × Pm be a subset. The bihomogeneous
vanishing ideal of A is

I(A) = ({f ∈ K [x, y] bihomogeneous | f (a, b) = 0 ∀(a, b) ∈ A})
and V (I(A)) = A is its Zariski closure. For an algebraic subset
A ⊂ Pn × Pm the bigraded ring K [x, y]/ I(A) is called the
bihomogeneous coordinate ring of A.
Remark. For J ⊂ K [x, y] a bihomogenous ideal we have

I(V (J)) = ((rad(J) : (x0, . . . , xn)) : (y0, . . . , ym).

We now are ready to define the product of two arbitrary projective
algebraic sets A ⊂ Pn and B ⊂ Pm:

A× B ⊂ Pn × Pm ⊂ PN

is the algebraic set defined by the bihomgeneous polynomials
fi ∈ I(A) ⊂ K [x] of bidegree (di , 0) and gj ∈ I(B) ⊂ K [y] of
bidegree (0, ej).



Quasi-projective algebraic sets and regular functions
Definition. A quasi-affine algebraic set is an open subset of an
affine algebraic set. Similarly we have the notion of a
quasi-projective algebraic set. Every quasi-affine algebraic set is
also quasi-projective because An = Pn \ V (x0).

The product of two quasi-affine (quasi-projective) algebraic sets
A = A1 \ A2 and B = B1 \ B2 is again quasi-affine
(quasi-projective).

A× B = A1 × B1 \ (A2 × B1 ∪ A1 × B2).

For A ⊂ Pn a quasi-projective algebraic set we define the ring of
regular functions O(A) as the ring of functions

f : A→ K

such that for every point p ∈ A there exist an open neighbourhood
U ⊂ A and homogeneous polynomials g , h ∈ K [x0, . . . , xn] of the
same degree with h(p) 6= 0 for all p ∈ U such that

f (p) =
g(p)

h(p)
.



Morphism
Definition. Let A be a quasi-projective algebraic set.

1. Let B ⊂ Am be a quasi-affine algebraic set. A morphism
ϕ : A→ B is a map which is given by an m-tupel of regular
functions fj ∈ O(A):

ϕ(p) = (f1(p), . . . , fm(p)) ∀p ∈ A.

2. Let B ⊂ Pm be a quasi-projective algebraic set. A map
ϕ : A→ B is a morphism if ϕ is locally given by regular
functions, i.e., for each point p ∈ A there exists an open
neighbarhood U ⊂ A and regular functions f0, . . . , fm ∈ O(U)
such that

ϕ(p) = [f0(p) : . . . : fm(p)] ∀p ∈ U



Examples
1. Let A ⊂ Pn be a quasi-projective algebraic set, and let
f0, . . . , fm ∈ K [x0, . . . , xn] be homogeneous polynomials of the
same degree d such that V (f0, . . . , fm) ∩ A = ∅. Then

ϕ : A→ Pm, p 7→ [f0(p) : . . . : fm(p)]

is a well-defined morphism. Indeed on the open set
U = A ∩ (Pn \ V (fi )) the map ϕ is given by the regular functions

[
f0
fi

: . . . :
fm
fi

]

and these open sets cover A since V (f0, . . . , fm) ∩ A = ∅.
In particular we see that the regular functions in O(U) which
define ϕ on U might not exist globally.
2. More specifically, consider the morphism ρd : P1 → Pd defined
by

[t0 : t1] 7→ [td0 : td−10 t1 : . . . : td1 ]



Examples
The image of ρd is the so-called rational normal curve of degree
d . It has the homogeneous ideal generated by the 2× 2-minors of
the 2× d-matrix (

x0 x1 . . . xd−1
x1 x2 . . . xd

)
Remark. Morphisms ϕ : A→ B between affine algebraic sets are
easier to describe because they simply correspond to K -algebra
homomorphisms ϕ∗ : K [B]→ K [A].
Morphism ϕ : A→ B between projective algebraic sets have a
more complicated description. However they are better behaved:

We will see in one of the next lectures that the image of a
projective algebraic set under a morphism is always an algebraic
subset of the target.
This was not the case for morphisms between affine algebraic sets.



Example
Consider A = V (xy − z2) ⊂ P2. On the affine chart Uz=1 we saw
that the projection

A2 ⊃ V (xy − 1)→ A1, (a, b) 7→ a

is not surjective, because the origin o is not in the image.
The map

A \ {[0 : 1 : 0]} → P1, [x : y : z ] 7→ [x : z ]

extends to a surjective morphism π : A→ P1 because

[x : z ] = [xy : yz ] = [z2 : yz ] = [z : y ]

holds on A \ V (yz). Thus the missing preimage point of
o = [0 : 1] ∈ A1 ⊂ P1 is the point p = [0 : 1 : 0] on the line V (z)
at infinity.


