Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

Overview

Today we have two quite independent topics: Mora division and products of projective spaces

1. Mora division
2. Products of projective spaces
3. Morphism

Mora's division theorem

Theorem. Let $>$ be a local monomial order and let $f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$. For every further element $g \in K\left[x_{1}, \ldots, x_{n}\right]$ there exists an element $u \in K\left[x_{1}, \ldots, x_{n}\right]$ with $u(0)=1$, elements $g_{1}, \ldots, g_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ and a remainder $h \in K\left[x_{1}, \ldots, x_{n}\right]$ such that following holds:

1) $u g=g_{1} f_{1}+\ldots+g_{r} f_{r}+h$.

2a) $\operatorname{Lt}(g) \geq \operatorname{Lt}\left(g_{i} f_{i}\right)$ whenever both sides are non-zero.
2b) If $h \neq 0$, then $\operatorname{Lt}(h)$ is not divisible by any $\operatorname{Lt}\left(f_{i}\right)$.

Mora's algorithm

Definition. Let $>$ be a monomial order. The ecart of a non-zero element $f \in K\left[x_{1}, \ldots, x_{n}\right]$ is

$$
\operatorname{ecart}(f)=\operatorname{deg} f-\operatorname{deg} \operatorname{Lt}(f)
$$

Algorithm.

Input. A local monomial order $>$, polynomials f_{1}, \ldots, f_{r} and g
Output. A remainder h of a Mora division of g by f_{1}, \ldots, f_{r}.

1. Set $h:=g$ and $D:=\left\{f_{1}, \ldots, f_{r}\right\}$.
2. while $(h \neq 0$ and $D(h):=\{f \in D \mid \operatorname{Lt}(f)$ divides $\operatorname{Lt}(h)\} \neq \emptyset)$ do

- Choose $f \in D(h)$ with ecart (f) minimal.
- if $\operatorname{ecart}(f)>\operatorname{ecart}(h)$, then $D:=D \cup\{f\}$.
- $h:=h-\frac{\operatorname{Lt}(h)}{\operatorname{Lt}(f)} f$.

3. return h.

Termination of Mora's algorithm

We write h_{k} and D_{k} for the value of h and D after k iterations of the while loop. Let x_{0} be a further variable. After k iteration while loop continues iff $\operatorname{Lt}\left(h_{k}\right) \in\left(\left\{\operatorname{Lt}(f) \mid f \in D_{k}\right\} \subset K\left[x_{1}, \ldots, x_{n}\right]\right.$ and h_{k} is added to D_{k} iff
$x_{0}^{\text {ecart }\left(h_{k}\right)} \operatorname{Lt}\left(h_{k}\right) \notin I_{k}:=\left(\left\{x_{0}^{\text {ecart }(f)} \operatorname{Lt}(f) \mid f \in D_{k}\right\}\right) \subset K\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
Since the chain of monomial ideals

$$
I_{0} \subset I_{1} \subset \ldots \subset I_{k} \subset \ldots \subset K\left[x_{0}, \ldots, x_{n}\right]
$$

becomes stationary there exists an N such that

$$
D_{N}=D_{N+1}=D_{N+2}=\ldots
$$

no longer increases.
After this point we homogenize h_{N} and the elements of D_{N} with x_{0}.

Termination of Mora's algorithm continued

$$
f^{h}=x_{0}^{\operatorname{deg} f} f\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right)
$$

has lead term $\operatorname{Lt}\left(f^{h}\right)=x_{0}^{\operatorname{ecart}(f)} \operatorname{Lt}(f)$ with respect to the monomial order $>_{g}$ on $K\left[x_{0}, \ldots, x_{n}\right]$ defined by

$$
\begin{aligned}
x_{0}^{a} x^{\alpha}>g x_{0}^{b} x^{\beta} \Leftrightarrow & \operatorname{deg} x_{0}^{a} x^{\alpha}>\operatorname{deg} x_{0}^{b} x^{\beta} \text { or } \\
& \operatorname{deg} x_{0}^{a} x^{\alpha}=\operatorname{deg} x_{0}^{b} x^{\beta} \text { and } x^{\alpha}>x^{\beta} .
\end{aligned}
$$

Since D_{N} does not change after this point we get a sequence

$$
\left(h_{k}^{h}\right)_{k \geq N}
$$

of homogeneous elements of the same degree with lead terms

$$
\operatorname{Lt}\left(h_{N}^{h}\right)=x_{0}^{\operatorname{ecart}\left(h_{N}\right)} \operatorname{Lt}\left(h_{N}\right)>_{g} \operatorname{Lt}\left(h_{N+1}^{h}\right)>_{g} \ldots
$$

After finitely many further steps the algorithm stops with an $h_{M}=0$ or an h_{M} with $\operatorname{Lt}\left(h_{M}\right) \notin\left(\left\{\operatorname{Lt}(f) \mid f \in D_{N}\right\}\right)$, since there are only finitely many monomials in $K\left[x_{0}, \ldots, x_{n}\right]$ of the same degree.

Correctness of the output.

Recursively, starting with $u_{0}=1, g_{i}^{(0)}=0$ and $h_{0}=g$ suppose that we already have expressions

$$
u_{\ell} g=g_{1}^{(\ell)} f_{1}+\ldots+g_{r}^{(\ell)} f_{r}+h_{\ell} \quad \text { with } u_{\ell}(0)=1
$$

for $\ell=0, \ldots, k-1$. Then, if the test condition for the k-th iteration of the while loop is fulfilled, choose a polynomial $f=f^{(k)}$ as in the algorithm and set

$$
h_{k}=h_{k-1}-m_{k} f^{(k)} \text { where } m_{k}=\frac{\operatorname{Lt}\left(h_{k-1}\right)}{\operatorname{Lt}(f(k))} .
$$

There are two possibilities
(a) $f^{(k)}$ is one of f_{1}, \ldots, f_{r} or
(b) $f^{(k)}$ is one of h_{1}, \ldots, h_{k-1}.

Thus substituting $h_{k-1}=h_{k}+m_{k} f^{(k)}$ into the expression for $u_{k-1} g$ we obtain the desired expression for $u_{k} g$ with
(a) $u_{k}=u_{k-1}$ and $g_{j}^{(k)}=g_{j}^{(k-1)}+m_{k}$ if $f^{(k)}=f_{j}$ or
(b) $u_{k}=u_{k-1}+m_{k} u_{\ell}$ for some ℓ and $g_{j}^{(k)}=g_{j}^{(k-1)}+m_{k} g_{j}^{(\ell)} \forall j$

Correctness of the output continued

In both cases we have $u_{k}(0)=u_{k-1}(0)=1$. In case (b) this follows from

$$
\operatorname{Lt}\left(h_{\ell}\right)>\operatorname{Lt}\left(h_{k}\right)=\operatorname{Lt}\left(m_{k} h_{\ell}\right)=m_{k} \operatorname{Lt}\left(h_{\ell}\right)
$$

Hence $1>m_{k}$ and $u_{k}(0)=u_{k-1}(0)+0 u_{\ell}(0)=1$.
The final expression satisfies condition 2a) because the lead terms of the h_{k} decrease in each round of the while loop. Finally, condition 2 b) is satisfied due to the stopping condition of the while loop.
Example. Consider $g=x$ and $f_{1}=x-x^{2}$ in $K[x]$ the Mora algorithm proceeds as follows:

$$
\begin{gathered}
h_{0}=x, D_{0}=\left\{x-x^{2}\right\}, 1 \cdot g=0 \cdot f_{1}+x, \\
f^{(1)}=x-x^{2}, m_{1}=1, D_{1}=\left\{x-x^{2}, x\right\}, 1 \cdot g=1 \cdot f_{1}+x^{2}, \\
f^{(2)}=x, m_{2}=x, D_{2}=D_{1},(1-x) \cdot g=1 \cdot f_{1}+0 .
\end{gathered}
$$

Products of algebraic sets

For two affine algebraic sets $A \subset \mathbb{A}^{n}$ and $B \subset \mathbb{A}^{m}$ the product

$$
A \times B \subset \mathbb{A}^{n} \times \mathbb{A}^{m}=\mathbb{A}^{n+m}
$$

is simply the algebraic set defined by

$$
(\mathrm{I}(A) \cup \mathrm{I}(B)) \subset K\left[x_{1}, \ldots x_{n}, y_{1}, \ldots y_{m}\right]
$$

where $\mathrm{I}(A) \subset K\left[x_{1}, \ldots, x_{n}\right]$ and $\mathrm{I}(B) \subset K\left[y_{1}, \ldots, y_{m}\right]$ are the vanishing ideals of A and B respectively.

For projective algebraic sets the definition of a product is not so clear. To start with, it is not a priori clear how to give $\mathbb{P}^{n} \times \mathbb{P}^{m}$ the structure of an algebraic set. One uses the Segre embedding.

Segre embedding 1

Define

$$
\sigma_{n, m}: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{N} \text { with } N=(n+1)(m+1)-1
$$

by

$$
\left(\left[a_{0}: \ldots: a_{m}\right],\left[b_{0}: \ldots: b_{n}\right]\right) \mapsto\left[a_{0} b_{0}: \ldots: a_{i} b_{j}: \ldots: a_{m} b_{n}\right] .
$$

This is a well-defined map. For any pair of points at least one component $a_{i} b_{j} \neq 0$.
We will use variables $\mathbf{x}=x_{0}, \ldots, x_{n}, \mathbf{y}=y_{0}, \ldots, y_{m}$ and
$\mathbf{z}=z_{00}, \ldots, z_{0 m}, z_{10}, \ldots, z_{n m}$ for the homogeneous coordinate rings of $\mathbb{P}^{n}, \mathbb{P}^{m}$ and \mathbb{P}^{N}. Moreover we call a polynomial

$$
f=\sum_{|\alpha|=d,|\beta|=e} f_{\alpha, \beta} x^{\alpha} y^{\beta} \in K[\mathbf{x}, \mathbf{y}]
$$

bihomogeneous (in \mathbf{x} and \mathbf{y}) of bidegree (d, e).

Segre embedding 2

Proposition. Let $\Sigma_{n, m} \subset \mathbb{P}^{N}$ be the projective algebraic set defined by the 2×2-minors of the $(n+1) \times(m+1)$-matrix $\left(z_{i j}\right)$. Then

$$
\sigma_{n, m}: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \Sigma_{m, n}
$$

is a bijection which induces isomorphisms $U_{i} \times U_{j} \cong \Sigma_{n, m} \cap U_{i j}$ on the standard charts. Moreover $\Sigma_{n, m} \subset \mathbb{P}^{N}$ is irreducible and the ideal of 2×2-minors coincides with the homogeneous ideal of $\Sigma_{m, m}$.
Proof. The minor

$$
\operatorname{det}\left(\begin{array}{ll}
z_{i j_{1}} & z_{i j_{2}} \\
z_{i j_{1}} & z_{i_{2} j_{2}}
\end{array}\right)
$$

vanishes on the image of $\sigma_{n, m}$ because

$$
\operatorname{det}\left(\begin{array}{ll}
x_{i_{1}} y_{j_{1}} & x_{i_{1}} y_{j_{2}} \\
x_{i_{2}} y_{j_{1}} & x_{i_{2}} y_{j_{2}}
\end{array}\right)=0
$$

Thus the image of $\sigma_{m, n}$ is contained in $\Sigma_{m, n}$.

Segre embedding 3

The points $r=\left[1: c_{01}: \ldots: c_{n m}\right] \in \Sigma_{n, m} \cap U_{00}$ satisfies

$$
c_{i j}=c_{i 0} c_{0 j} .
$$

Thus the pair of points
$(p, q)=\left(\left[1: c_{10}: \ldots, c_{n 0}\right],\left[1: c_{01}: \ldots: c_{0 m}\right]\right) \in U_{0} \times U_{0} \subset \mathbb{P}^{n} \times \mathbb{P}^{m}$
is the unique preimage point of r and $\Sigma_{n, m} \cap U_{00} \cong U_{0} \times U_{0}$. The same argument in other charts gives that $\sigma_{n, m}: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \Sigma_{n, m}$ is bijective and gives isomorphisms $\Sigma_{n, m} \cap U_{i j} \cong U_{i} \times U_{j}$.
To prove that $\Sigma_{m, n}$ is irreducible and that the ideal J of 2×2-minors of $\left(z_{i j}\right)$ is its homogeneous ideal, it suffices to prove that J is a prime ideal.

Segre embedding 4

Consider the ring homorphism

$$
\varphi: K[\mathbf{z}] \rightarrow K[\mathbf{x}, \mathbf{y}], z_{i j} \mapsto x_{i} y_{j}
$$

Clearly, $J \subset \operatorname{ker} \varphi$. To prove equality we consider a reverse lexicographic order $>_{\text {rlex }}$ which refines the following order on the variables

We have

$$
\operatorname{Lt}\left(\operatorname{det}\left(\begin{array}{ll}
z_{1 j_{1}} & z_{i_{1} j_{2}} \\
z_{i_{2} j_{1}} & z_{i_{2} j_{2}}
\end{array}\right)\right)=-z_{i j_{1}} z_{i_{1} j_{2}}
$$

whenever $i_{1}<i_{2}$ and $j_{1}<j_{2}$.

Segre embedding 5

Thus the remainder of a monomial in $K[z]$ divided by the 2×2-minors has the form

$$
z_{i j_{1}} z_{i j_{2}} \cdots z_{i_{d} j_{d}} \text { with } i_{1} \leq i_{2} \leq \ldots \leq i_{d} \text { and } j_{1} \leq j_{2} \leq \ldots \leq j_{d}
$$

Since φ induces a bijection between such monomials and bihomogeneous monomials of bidegree (d, d) we conclude that the 2×2-minors form a Gröbner basis of $\operatorname{ker} \varphi$. In particular $J=\operatorname{ker} \varphi$ and this is a prime ideal because $K[\mathbf{z}] / \operatorname{ker} \varphi$ is isomorphic to a subring of the domain $K[\mathbf{x}, \mathbf{y}]$.
Definition. We give $\mathbb{P}^{n} \times \mathbb{P}^{m}$ the structure of a projective variety by identifying $\mathbb{P}^{n} \times \mathbb{P}^{m}$ and $\Sigma_{n, m}$.
Example. We identify $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with the quadric

$$
\Sigma_{1,1}=V\left(z_{00} z_{11}-z_{10} z_{01}\right) \subset \mathbb{P}^{3}
$$

Hypersurface in $\mathbb{P}^{n} \times \mathbb{P}^{m}$ of bidegree (d, e).

Notice that the Zariski topology on $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is finer than product of the Zariski topologies of the factors. For example if

$$
f=\sum_{|\alpha|=d,|\beta|=e} f_{\alpha, \beta} x^{\alpha} y^{\beta} \in K[\mathbf{x}, \mathbf{y}]
$$

is a bihomogeneous polynomial of bidegree (d, e), then

$$
V(f)=\left\{(a, b) \in \mathbb{P}^{n} \times \mathbb{P}^{m} \mid f(a, b)=0\right\}
$$

is an Zariski closed subset, which for general f is not closed in the product topology. To see that $V(f)$ is an algebraic subset of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ we argue as follows: Suppose $d \geq e$. Then multiplying f with monomials $y^{\beta} \in K[\mathbf{y}]$ of degree $d-e$ we get $\binom{d-e+m}{m}$ polynomials $f y^{\beta}$ of bidegree (d, d), each of which is the image of a polynomial in $F_{\beta} \in K[\mathbf{z}]$ of degree $d . V(f)$ coincides with the zero-loci of $\left(\left\{F_{\beta}| | \beta \mid=d-e\right\}\right)+\operatorname{ker} \varphi$.
$V(f)$ is called a hypersurface of bidegree (d, e) in $\mathbb{P}^{n} \times \mathbb{P}^{m}$.

Algebraic subsets of $\mathbb{P}^{n} \times \mathbb{P}^{m}$

Definition. Let $A \subset \mathbb{P}^{n} \times \mathbb{P}^{m}$ be a subset. The bihomogeneous vanishing ideal of A is

$$
\mathrm{I}(A)=(\{f \in K[\mathbf{x}, \mathbf{y}] \text { bihomogeneous } \mid f(a, b)=0 \forall(a, b) \in A\})
$$

and $V(\mathrm{I}(A))=\bar{A}$ is its Zariski closure. For an algebraic subset $A \subset \mathbb{P}^{n} \times \mathbb{P}^{m}$ the bigraded ring $K[\mathbf{x}, \mathbf{y}] / I(A)$ is called the bihomogeneous coordinate ring of A.
Remark. For $J \subset K[\mathbf{x}, \mathbf{y}]$ a bihomogenous ideal we have

$$
\mathrm{I}(V(J))=\left(\left(\operatorname{rad}(J):\left(x_{0}, \ldots, x_{n}\right)\right):\left(y_{0}, \ldots, y_{m}\right)\right.
$$

We now are ready to define the product of two arbitrary projective algebraic sets $A \subset \mathbb{P}^{n}$ and $B \subset \mathbb{P}^{m}$:

$$
A \times B \subset \mathbb{P}^{n} \times \mathbb{P}^{m} \subset \mathbb{P}^{N}
$$

is the algebraic set defined by the bihomgeneous polynomials $f_{i} \in \mathrm{I}(A) \subset K[\mathbf{x}]$ of bidegree $\left(d_{i}, 0\right)$ and $g_{j} \in \mathrm{I}(B) \subset K[\mathbf{y}]$ of bidegree $\left(0, e_{j}\right)$.

Quasi-projective algebraic sets and regular functions

Definition. A quasi-affine algebraic set is an open subset of an affine algebraic set. Similarly we have the notion of a quasi-projective algebraic set. Every quasi-affine algebraic set is also quasi-projective because $\mathbb{A}^{n}=\mathbb{P}^{n} \backslash V\left(x_{0}\right)$.
The product of two quasi-affine (quasi-projective) algebraic sets $A=A_{1} \backslash A_{2}$ and $B=B_{1} \backslash B_{2}$ is again quasi-affine (quasi-projective).

$$
A \times B=A_{1} \times B_{1} \backslash\left(A_{2} \times B_{1} \cup A_{1} \times B_{2}\right)
$$

For $A \subset \mathbb{P}^{n}$ a quasi-projective algebraic set we define the ring of regular functions $\mathcal{O}(A)$ as the ring of functions

$$
f: A \rightarrow K
$$

such that for every point $p \in A$ there exist an open neighbourhood $U \subset A$ and homogeneous polynomials $g, h \in K\left[x_{0}, \ldots, x_{n}\right]$ of the same degree with $h(p) \neq 0$ for all $p \in U$ such that

$$
f(p)=\frac{g(p)}{h(p)}
$$

Morphism

Definition. Let A be a quasi-projective algebraic set.

1. Let $B \subset \mathbb{A}^{m}$ be a quasi-affine algebraic set. A morphism $\varphi: A \rightarrow B$ is a map which is given by an m-tupel of regular functions $f_{j} \in \mathcal{O}(A)$:

$$
\varphi(p)=\left(f_{1}(p), \ldots, f_{m}(p)\right) \forall p \in A .
$$

2. Let $B \subset \mathbb{P}^{m}$ be a quasi-projective algebraic set. A map $\varphi: A \rightarrow B$ is a morphism if φ is locally given by regular functions, i.e., for each point $p \in A$ there exists an open neighbarhood $U \subset A$ and regular functions $f_{0}, \ldots, f_{m} \in \mathcal{O}(U)$ such that

$$
\varphi(p)=\left[f_{0}(p): \ldots: f_{m}(p)\right] \forall p \in U
$$

Examples

1. Let $A \subset \mathbb{P}^{n}$ be a quasi-projective algebraic set, and let $f_{0}, \ldots, f_{m} \in K\left[x_{0}, \ldots, x_{n}\right]$ be homogeneous polynomials of the same degree d such that $V\left(f_{0}, \ldots, f_{m}\right) \cap A=\emptyset$. Then

$$
\varphi: A \rightarrow \mathbb{P}^{m}, p \mapsto\left[f_{0}(p): \ldots: f_{m}(p)\right]
$$

is a well-defined morphism. Indeed on the open set $U=A \cap\left(\mathbb{P}^{n} \backslash V\left(f_{i}\right)\right)$ the map φ is given by the regular functions

$$
\left[\frac{f_{0}}{f_{i}}: \ldots: \frac{f_{m}}{f_{i}}\right]
$$

and these open sets cover A since $V\left(f_{0}, \ldots, f_{m}\right) \cap A=\emptyset$.
In particular we see that the regular functions in $\mathcal{O}(U)$ which define φ on U might not exist globally.
2. More specifically, consider the morphism $\rho_{d}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}$ defined by

$$
\left[t_{0}: t_{1}\right] \mapsto\left[t_{0}^{d}: t_{0}^{d-1} t_{1}: \ldots: t_{1}^{d}\right]
$$

Examples

The image of ρ_{d} is the so-called rational normal curve of degree d. It has the homogeneous ideal generated by the 2×2-minors of the $2 \times d$-matrix

$$
\left(\begin{array}{cccc}
x_{0} & x_{1} & \ldots & x_{d-1} \\
x_{1} & x_{2} & \ldots & x_{d}
\end{array}\right)
$$

Remark. Morphisms $\varphi: A \rightarrow B$ between affine algebraic sets are easier to describe because they simply correspond to K-algebra homomorphisms $\varphi^{*}: K[B] \rightarrow K[A]$.
Morphism $\varphi: A \rightarrow B$ between projective algebraic sets have a more complicated description. However they are better behaved:
We will see in one of the next lectures that the image of a projective algebraic set under a morphism is always an algebraic subset of the target.
This was not the case for morphisms between affine algebraic sets.

Example

Consider $A=V\left(x y-z^{2}\right) \subset \mathbb{P}^{2}$. On the affine chart $U_{z=1}$ we saw that the projection

$$
\mathbb{A}^{2} \supset V(x y-1) \rightarrow \mathbb{A}^{1},(a, b) \mapsto a
$$

is not surjective, because the origin o is not in the image. The map

$$
A \backslash\{[0: 1: 0]\} \rightarrow \mathbb{P}^{1},[x: y: z] \mapsto[x: z]
$$

extends to a surjective morphism $\pi: A \rightarrow \mathbb{P}^{1}$ because

$$
[x: z]=[x y: y z]=\left[z^{2}: y z\right]=[z: y]
$$

holds on $A \backslash V(y z)$. Thus the missing preimage point of $o=[0: 1] \in \mathbb{A}^{1} \subset \mathbb{P}^{1}$ is the point $p=[0: 1: 0]$ on the line $V(z)$ at infinity.

