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Frank-Olaf Schreyer

Saarland University WS 2020/21



Overview

Today’s topics are

1. Linear projections

2. A dimension bound

3. The Veronese embeddings

4. The fundamental theorem of elimination



Morphism
We recall the definition of a morphism.
Definition. Let A be a quasi-projective algebraic set.

1. Let B ⊂ Am be a quasi-affine algebraic set. A morphism
ϕ : A→ B is a map which is given by an m-tupel of regular
functions fj ∈ O(A):

ϕ(p) = (f1(p), . . . , fm(p)) ∀p ∈ A.

2. Let B ⊂ Pm be a quasi-projective algebraic set. A map
ϕ : A→ B is a morphism if ϕ is locally given by regular
functions, i.e., for each point p ∈ A there exists an open
neighbourhood U ⊂ A and regular functions
f0, . . . , fm ∈ O(U) such that

ϕ(p) = [f0(p) : . . . : fm(p)] ∀p ∈ U

Clearly, morphisms can be composed.
Definition. A morphism ϕ : A→ B is an isomorphism if there
exists a morphism ψ : B → A such that ψ ◦ ϕ = idA and
ϕ ◦ ψ = idB .



Linear projections
Let A ⊂ Pn be a projective variety. Let `0, . . . , `r ∈ K [x0, . . . , xn]
be r + 1 linear independent linear forms such that
L = V (`1, . . . , `r ) ∼= Pn−r−1 does not intersect A. Then

πL : A→ Pr , a 7→ [`0(a) : . . . : `r (a)]

is called the linear projection from L. The condition A ∩ L = ∅ is
equivalent to rad(I(A) + (`0, . . . , `r )) = (x0, . . . , xn). If we choose
coordinates on Pn such that `0 = xn−r , . . . , `r = xn then A ∩ L = ∅
is equivalent to the condition that there are homogeneous
equations fi ∈ I(A) with

fi ≡ xdii mod (xn−r , . . . , xn) for i = 0, . . . , n − r − 1.

Thus in this case the map

φ : K [xn−r , . . . , xn]→ K [A] = K [x0, . . . , xn]/ I(A)

induces an integral ring extension K [A′] ↪→ K [A] where
A′ = V (ker(φ)).



A dimension bound
Thus in this situation πL induces a finite and surjective map
A→ A′ ⊂ Pr . In particular, dimA′ = dimA ≤ r .

Corollary. Let A ⊂ Pn be a projective algebraic set. If there exists
a linear subspace L ⊂ Pn of dimension n − r − 1 with A ∩ L = ∅,
then dimA ≤ r .

Definition. Let A ⊂ Pn be a projective algebraic set. We call a
linear projection πL : A→ Pr with L ∩ A = ∅ with r = dimA a
linear Noether normalization.
Corollary. Let A ⊂ Pn be a projective algebraic set of dimension
dimA = r . Then every linear subspace L of dimension
dim L ≥ n − r intersects A.
Proof. If L ∩ A = ∅, then dimA < r .

Theorem. Let X ,Y ⊂ Pn be projective algebraic sets. Then

dimX ∩ Y ≥ dimX + dimY − n.

In particular the intersection of algebraic sets of complementary
dimensions is always non-empty.



Proof of the dimension bound
Proof. Consider the projective space P2n+1 with coordinate ring
K [x0, . . . , xn, y0, . . . , yn] and the algebraic set J(X ,Y ) defined by
I(X ) + I(Y ) where I(X ) ⊂ K [x0, . . . , xn] and I(Y ) ⊂ K [y0, . . . , yn]
denote the homogeneous ideals in a disjoint sets of variables. The
variety J(X ,Y ) is called the join of X and Y because it is the
union of all lines joining a point of X and with a point of Y ,

X ⊂ Pn ∼= V (y0, . . . , yn) ⊂ P2n+1 ⊃ V (x0, . . . , xn) ∼= Pn ⊃ Y .

Clearly,
dim J(X ,Y ) = dimX + dimY + 1

as one can see by combining linear Noether normalizations of X
and Y . X ∩ Y = J(X ,Y ) ∩ V (x0 − y0, . . . , xn − yn) is the
intersection of J(X ,Y ) with a linear subspace of dimension n.
Thus the intersection X ∩ Y 6= ∅ if

n ≥ 2n + 1− (dimX + dimY + 1)⇔ dimX + dimY − n ≥ 0

by the second corollary.



Proof of the dimension bound continued
Suppose dimX ∩ Y = e > 0. Let `0, . . . , `e ⊂ K [x0, . . . , xn] define
a linear Noether normalization of X ∩ Y . Then

J(X ,Y ) ∩ L = ∅
where L = V (x0 − y0, . . . , xn − yn, `0, . . . , `e) is a linear space of
dimension 2n + 1− (n + 1 + e + 1) = 2n + 1− (n + 1 + e)− 1 and

dim J(X ,Y ) ≤ n + 1 + e

holds by the first corollary. Thus

dimX ∩ Y = e ≥ dim J(X ,Y )− n − 1 = dimX + dimY − n.

Remark. Using Krull’s principal ideal theorem one can show for
projective varieties X ,Y ⊂ Pn that every component C of X ∩ Y
has dimension dimC ≥ dimX + dimY − n.



The Veronese embeddings
Definition. Let n, d ≥ 1, N =

(n+d
n

)
and m0 = xd0 , . . . ,mN = xdn

be all degree d monomials in K [x0, . . . , xn] in some order. The
monomials define a morphism

ρn,d : Pn → PN

which turns out to be an embedding, i.e., an isomorphism to it’s
image Vn,d ⊂ PN . ρn,d is called the Veronese or d-uple
embedding of Pn.
Example. In case of n = 1 the morphism ρ1,d embeds P1 ↪→ Pd as
the rational normal curve of degree d in Pd defined by the
2× 2-minors of (

x0 x1 . . . xd−1
x1 x2 . . . xd

)
.



Example. We discuss

ρ2,2 : P2 → P5, [x : y : z ] 7→ [x2 : xy : y2 : xz : yz : z2]

in some details. We use homogeneous coordinates w0, . . . ,w5 on
P5. Consider the symmetric matrix

∆ =

w0 w1 w3

w1 w2 w4

w3 w4 w5


and let V ⊂ P5 be the algebraic set defined by the ideal I of
2× 2-minors of ∆. Clearly, these minors vanish on all points of
ρ2,2(P2). We show that ρ2,2 induces an isomorphism of P2 with V
by describing the inverse morphism ψ. V ⊂ U0 ∪ U2 ∪ U5 because

w2
1 ,w

2
3 ,w

2
4 ∈ I + (w0,w2,w5).

On V ∩ U0 the inverse map is given by

p 7→ [w0(p) : w1(p) : w3(p)]

because [x2 : xy : xz ] = [x : y : z ] on Ux = {x 6= 0} ⊂ P2.



V = V2,2 continued
Similarly, the inverse map ψ is given on V ∩ U2 and V ∩ U5 by the
second respectively third row of ∆. The maps coincide on
V ∩ Ui ∩ Uj for i , j ∈ {0, 2, 5} since the 2× 2-minors of ∆ vanish
on V . Thus these pieces glue to a well-defined morphism
ψ : V → P2 and P2 ∼= V .
Remark. Notice that ψ is a morphism which cannot be defined
globally by only one tuple of three homogeneous polynomials of
the same degree.

We finish the treatment of this example by proving
Claim. I is the homogeneous ideal of V .

Proof. Consider the ring homomorphism

ϕ : K [w0, . . . ,w5]→ K [x , y , z ],w0 7→ x2,w1 7→ xy , . . . ,w5 7→ z2.

Then I ⊂ ker(ϕ). To prove equality we consider a reverse
lexicographic order with w0, . . . ,w5 are ordered such that
w1,w3,w4 > w0,w2,w5. Then

w2
1 ,w1w3,w

2
3 ,w1w4,w3w4,w

2
4

are the lead terms of the six different minors.



V = V2,2 continued
Thus a remainder of a the division by the minors is at most linear
in w1,w3 and w4, and there are precisely(

d + 2

2

)
+ 3

(
d + 1

2

)
= 2d2 + 3d + 1 =

(
2d + 2

2

)
different monomials of degree d occuring as remainders. Since ϕ is
surjective the homogeneous coordinate ring SV has precisely that
many elements in degree d . Thus I = ker(ϕ) and the minors form
a Gröbner basis.The ideal I is prime because

SV = K [w0, . . . ,w5]/I ∼= K [x2, xy , y2, xz , yz , xz ] ⊂ K [x , y , z ]

is isomorphic to a subring of a domain.
Finally we note that the Hilbert polynomial of V is

pV (t) =

(
2t + 2

2

)
= 4

t2

2!
+ 3t + 1, hence degV = 4.



Vn,d

Theorem. The Veronese morphism

ρn,d : Pn → PN , [x0 : . . . : xn] 7→ [xd0 : xd−10 x1 : . . . : xdn ]

where N =
(n+d

n

)
− 1 induces an isomorphism onto its image Vn,d ,

which is a subvariety of PN of degree degVn,d = dn.
Proof. The homogeneous coordinate ring of PN has a variable yα
for each α ∈ Nn with |α| = d , and ρn,d corresponds to the ring
homomorphism

ϕ : K [y ′αs]→ K [x0, . . . , xn], yα 7→ xα.

We will show that Vn,d coincides with the a projective variety
V (ker(ϕ)) ⊂ PN .
Some equations in I = ker(ϕ) can be obtained as follows: Consider
the

(n+d−1
n

)
× (n + 1)-matrix ∆ with rows corresponding to

monomials of xβ of degree d − 1 and columns corresponding to
the variables x0, . . . , xn whose entries are ∆xβ ,xj = yα where

xα = xβxj . The 2× 2-minors of ∆ are contained in I .



Vn,d continued
Vn,d is contained in the union of n + 1 standard charts of PN :
Vn,d ∩ V (y(d ,0,...,0), . . . , y(0,...,0,d)) = ∅ because

ydα − yα0

(d ,0,...,0) · . . . · y
αn

(0,...,0,d) ∈ I .

Thus
Vn,d ⊂ Ũ0 ∪ . . . ∪ Ũn

for Ũj = {y(0,...,d ,...0) 6= 0} corresponding to the monomial xdj .

ρn,d induces an isomorphism of U0 with Vn,d ∩ Ũ0: The map

p 7→ [y(d ,0,...,0)(p) : y(d−1,1,...,0)(p) : . . . : y(d−1,0,...,1)(p)]

corresponding to the row of ∆xd0
defines the inverse. Similarly

Vn,d ∩ Ũj
∼= Uj

by the map defined by the row ∆xdj
.



Vn,d continued

These maps glue to a well-defined inverse morphism

ψ : Vn,d → Pn

since the 2× 2-minors of ∆ vanish on Vn,d . To compute the
degree we compute the Hilbert polynomial. Since
K [yα

′s]/I ∼= K [xα ′s] ⊂ K [x0, . . . , xn] we obtain

pVn,d
(t) =

(
dt + n

n

)
= dn t

n

n!
+ lower terms .

Corollary. Every quasi-projective algebraic set has a finite open
covering by affine algebraic sets.



Proof of the corollary
Let

f =
∑
α

fαx
α ∈ K [x0, . . . , xn]

be a homogeneous polynomial of degree d . Consider the open set
Uf = Pn \ V (f ) and the corresponding hyperplane
Hf = V (

∑
α fαyα) ⊂ PN . Under the Veronese embedding Uf is

isomorphic to the Zariski-closed subset of AN , since

Uf
∼= Vn,d ∩ (PN \ Hf ) ⊂ PN \ Hf

∼= AN .

Hence Uf is isomorphic to an affine variety.
Let A = A1 \ A2 be a quasi-projective set where A2 ⊂ A1 ⊂ Pn are
projective algebraic subsets. If A2 = V (f1, . . . , fr ) then

A =
r⋃

j=1

(A1 ∩ Ufj )

is an open covering. Since A1 ∩ Ufj is a closed subset of the affine
variety Uf it is isomorphic to an affine algebraic set.



Morphism from projective algebraic sets
Theorem. Let A be a projective algebraic set and ϕ : A→ B a
morphism to a quasi-projective algebraic set. Then ϕ(A) ⊂ B is a
Zariski-closed subset.

Corollary. Let A be a projective variety. Every regular function
f : A→ K is constant.

Proof of the Corollary. f defines a morphism f : A→ A1 ⊂ P1.
The image is closed in P1 hence different from A1. Since it is also
closed in A1 it is a finite union of points. Since A is irreducible, it
is a single point.

Remark. In case K = C, this corollary is similar to the maximum
principle: If f is a holomorphic function on a compact complex
connected manifold A then |f | attains its maximum, and hence f is
constant.



Graph of a morphism

Lemma. Let ϕ : A→ B a morphism between quasi-projective
algebraic sets. Then the graph of ϕ is a closed subset of A× B.

Proof. To be a closed subset is a local property. Hence we may
replace B by an open affine subset U and A by an open affine
subset of ϕ−1(U) since every quasi projective algebraic set has an
open affine covering by the corollary to the Theorem on the
Veronese embeddings. Thus we may assume the A and B are
subsets of An and Am respectively and that ϕ is given by a tuple
of polynomial functions (f1, . . . , fm). Then the graph of ϕ is
defined by the ideal

(y1 − f1(x1, . . . , xn), . . . , ym − fm(x1, . . . , xn))

on A× B.



The fundamental theorem of elimination
Passing to the graph reduces the proof of the theorem above to
the following:
Theorem. Let A be a projective algebraic set and B a
quasi-projective algebraic set. Then the projection onto the second
factor A× B → B is a closed map, i.e., maps closed subsets of
A× B to closed subsets of B.

Proof. We may replace B by an open affine subset. Hence we
may assume that A ⊂ Pn and B ⊂ Am are closed subsets, and it
suffices to prove that the projection Pn × Am → Am is closed.
Any algebraic subset X ⊂ Pn × Am is defined by finitely many
polynomials f1, . . . , fr ∈ K [x0, . . . , xn, y1, . . . , ym] where each fi is
homogeneous of some degree di in x0, . . . , xn. By the projective
Nullstellenatz, a point q ∈ Am lies in the image of X iff the ideal

I (q) := (f1(x, q), . . . , (fr (x, q)) ⊂ K [x]

does not contain any of the ideals (x0, . . . , xn)d for d ≥ 1.



Proof of the fundamental theorem of elimination
Define

Yd = {q ∈ Am | I (q) 6⊃ (x0, . . . , xn)d}.
Then the image of X is

Y =
∞⋂
d=1

Yd

and it suffices to prove that each Yd is an algebraic subset of Am.
To obtain equations for Yd we multiply each fi with all monomials
of degree d − di in x. Let Td denote the resulting set of
polynomials. Then q /∈ Yd iff each monomial in K [x0, . . . , xn]d of
degree is a linear combination of the polynomials f (x, q) with
f ∈ Td . Comparing coefficients we obtain a(d+n

n

)
×
∑r

i=1

(d−di+n
n

)
-matrix Md with entries in K [y1, . . . , ym]

such that q ∈ Yd iff rankMd(q) <
(d+n

n

)
. Thus the(d+n

n

)
×
(d+n

n

)
-minors of Md define Yd .



Computing the elimination ideal in concrete examples
The proof of the theorem does not yield a practical algorithm to
compute the image. Here is an approach which works frequently in
practise.
Definition. Let I , J be ideals in a ring. Then the saturation of I
with respect to J is

I : J∞ =
∞⋃

N=1

(I : JN).

To compute the saturation in noetherian rings one can iterate

Ik+1 = Ik : J

starting with I0 = I until IN+1 = IN . Then IN = I : J∞.

In the situation of X ⊂ Pn × Am defined by f1, . . . , fr as above, we
obtain equations of the image Y ⊂ Am by taking the elements of
degree 0 in x of

(f1, . . . , fr ) : (x0, . . . , xn)∞.


