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Overview

Today's topics are
1. Linear projections
2. A dimension bound
3. The Veronese embeddings

4. The fundamental theorem of elimination



Morphism
We recall the definition of a morphism.
Definition. Let A be a quasi-projective algebraic set.
1. Let B C A™ be a quasi-affine algebraic set. A morphism
@ : A— B is a map which is given by an m-tupel of regular
functions f; € O(A):

o(p) = (A(p),-- ., fm(p)) Vp € A.

2. Let B C P be a quasi-projective algebraic set. A map
@ : A— B is a morphism if ¢ is locally given by regular
functions, i.e., for each point p € A there exists an open
neighbourhood U C A and regular functions
fo, ..., fm € O(U) such that

e(p) =[fo(p): ... : fm(p)] VP € U

Clearly, morphisms can be composed.
Definition. A morphism ¢ : A — B is an isomorphism if there
exists a morphism 1) : B — A such that 9 o ¢ = ida and

o =idg.



Linear projections
Let A C P" be a projective variety. Let ¢y, ..., ¢, € K[xo, ..., Xn]
be r + 1 linear independent linear forms such that
L=V(l,...,0,) = P"~"1 does not intersect A. Then

A= Pam [b(a) ... 4(a)]

is called the linear projection from L. The condition ANL=10is
equivalent to rad(l(A) + (4o, ..., %4r)) = (X0, ..., %n). If we choose
coordinates on P" such that g = xp—r,..., 4, = x, then ANL =10
is equivalent to the condition that there are homogeneous
equations f; € I(A) with

_ d; .
fi=x" mod (Xp—r,...,Xxp) for i =0,....n—r—1

Thus in this case the map

¢ K[xn—r,...,xa] = K[A] = K[x0, . .., xa]/ 1(A)
induces an integral ring extension K[A'] < K[A] where
A = V(ker(¢)).



A dimension bound

Thus in this situation 7, induces a finite and surjective map
A — A CP'. In particular, dm A" =dimA < r.

Corollary. Let A C P” be a projective algebraic set. If there exists
a linear subspace L C P" of dimension n —r — 1 with AN L = 0,
thendim A < r. OJ

Definition. Let A C P"” be a projective algebraic set. We call a
linear projection 7w : A — P" with LN A =0 with r =dimA a
linear Noether normalization.

Corollary. Let A C P" be a projective algebraic set of dimension
dim A = r. Then every linear subspace L of dimension

dim L > n — r intersects A.

Proof. If LN A =10, thendimA < r. ]

Theorem. Let X,Y C P" be projective algebraic sets. Then
dmXNY >dimX +dimY — n.

In particular the intersection of algebraic sets of complementary
dimensions is always non-empty.



Proof of the dimension bound
Proof. Consider the projective space P>"*1 with coordinate ring
K[xo,---,Xn, Y0,---,Yn] and the algebraic set J(X, Y) defined by
[(X) +1(Y) where I(X) C K[xo,...,xn] and I(Y) C K[yo, ..., Yn]
denote the homogeneous ideals in a disjoint sets of variables. The
variety J(X, Y) is called the join of X and Y because it is the
union of all lines joining a point of X and with a point of Y/,

XCP "2 V(y,...,yn) CPP™ 5 Vi(xg,...,x)) ZP"D Y,

Clearly,
dimJ(X,Y)=dimX +dimY +1
as one can see by combining linear Noether normalizations of X
and Y. XNY =J(X,Y)NV(xo— Y0,---,Xn — ¥n) is the
intersection of J(X, Y) with a linear subspace of dimension n.
Thus the intersection X N Y # 0 if
n>2n+1—(dmX+dimY +1)<dimX+dimY —n>0

by the second corollary.



Proof of the dimension bound continued

Suppose dimXNY =e > 0. Let {y,...,le C K[x0,...,Xn] define
a linear Noether normalization of X N'Y. Then

JX,Y)nL=1
where L = V/(x0 — Yo,y %Xn — ¥n, Lo, ..., Le) is a linear space of
dimension 2n+1—(n+14+e+1)=2n+1—(n+1+e)—1 and
dimJ(X,Y)<n+1l+e
holds by the first corollary. Thus
dmXNY=e>dmJ(X,Y)—n—1=dimX+dimY —n.

L]
Remark. Using Krull's principal ideal theorem one can show for
projective varieties X, Y C P" that every component C of XNY
has dimension dim C > dim X +dimY — n.



The Veronese embeddings
Definition. Let n,d > 1, N = ("79) and mo = x§,...,my = x¢
be all degree d monomials in K[xp, ..., x,] in some order. The
monomials define a morphism

Pnd P — PN

which turns out to be an embedding, i.e., an isomorphism to it's
image V4 C PN, Pn,d is called the Veronese or d-uple
embedding of P".

Example. In case of n = 1 the morphism p; 4 embeds P! — P9 as
the rational normal curve of degree d in P¢ defined by the

2 x 2-minors of
X0 X1 ... Xd—-1
X1 X2 ... Xd ’



Example. We discuss
p272:IP’2—>IP’5,[x:y:z]r—>[x2:xy:y2:xz:yz:22]

in some details. We use homogeneous coordinates wy, ..., ws on

IP°. Consider the symmetric matrix

W w1 W3
A=|w w wy

w3 Waq Whs
and let V C P be the algebraic set defined by the ideal / of
2 x 2-minors of A. Clearly, these minors vanish on all points of
p272(]P’2). We show that pp 5 induces an isomorphism of P2 with V
by describing the inverse morphism . V C Uy U U, U Us because

wi, wi, wi € 1+ (wo, wa, ws).
On V N Uy the inverse map is given by
p = [wo(p) : wi(p) : ws(p)]

because [x? : xy : xz] =[x : y : z] on U, = {x # 0} C P2



V = V,, continued
Similarly, the inverse map 1 is given on V N U, and V N Us by the
second respectively third row of A. The maps coincide on
VU nUy;fori,je{0,2,5} since the 2 x 2-minors of A vanish
on V. Thus these pieces glue to a well-defined morphism
p:V s P?and P22V,
Remark. Notice that v is a morphism which cannot be defined
globally by only one tuple of three homogeneous polynomials of
the same degree.

We finish the treatment of this example by proving
Claim. / is the homogeneous ideal of V.

Proof. Consider the ring homomorphism
©: K[wo, ..., ws] = K[x,y,z],wo — x2, w1 = Xy, ..., ws — z°.

Then | C ker(p). To prove equality we consider a reverse
lexicographic order with wy, ..., ws are ordered such that
Wi, W3, Wg > Wp, Wo, Ws. T hen

2 2 2
Wy, W1Wws, W3, Wi Wa, W3Wq, Wy



V = V,, continued

Thus a remainder of a the division by the minors is at most linear
in w1, w3 and wy, and there are precisely

d+2 d+1 2d +2
( JQF >+3< er ):2d2+3d+1:< 2+ >

different monomials of degree d occuring as remainders. Since ¢ is
surjective the homogeneous coordinate ring Sy has precisely that
many elements in degree d. Thus | = ker(¢) and the minors form
a Grobner basis. The ideal / is prime because

Sy = K[W07-‘-7W5]// = K[X27Xy7y2vxzvyz7xz] - K[X,y72]

is isomorphic to a subring of a domain.
Finally we note that the Hilbert polynomial of V is
2t + 2) t2

pv(t) = < 5 :4j+3t—|—1, hence deg V = 4.

O



Vn,d

Theorem. The Veronese morphism

Pod  PT PN o] = S X T L xT]
where N = ('Hr;d) — 1 induces an isomorphism onto its image V, 4,
which is a subvariety of PN of degree deg Viog=d".
Proof. The homogeneous coordinate ring of PN has a variable y,
for each a € N" with |a| = d, and p, 4 corresponds to the ring
homomorphism

o K[y.s] = K[xo,- - Xn], Ya + x°.

We will show that V/,, 4 coincides with the a projective variety
V(ker(¢)) C PN.
Some equations in | = ker(y) can be obtained as follows: Consider
the ("971) x (n + 1)-matrix A with rows corresponding to
monomials of x? of degree d — 1 and columns corresponding to
the variables xp, . .., x, whose entries are Axﬁ,xj = Yo Where
x® = xﬁxj. The 2 x 2-minors of A are contained in /.



V.4 continued
V.4 is contained in the union of n 41 standard charts of PN.

Vid N V(¥(d,0.,..0) - - -+ ¥(0,...0,d)) = I because

Qn

d
Yo — y(oéf,o,...,O) e Yoh0d) €1

Thus _ _
\/de UU...UU,

for UJ = {¥o.....d,...0) # 0} corresponding to the monomial xjd.
Pn,d induces an isomorphism of Up with V), 4 N Uy: The map
P = Yd0...0/(P) : Y(d-11,..00(P) : -+ Yd-1,0,.,.1)(P)]
corresponding to the row of Axg defines the inverse. Similarly
Vn,d N UJ = UJ'
by the map defined by the row A 4.
J



V.4 continued

These maps glue to a well-defined inverse morphism
Y Vpg—P°

since the 2 x 2-minors of A vanish on V,, 4. To compute the
degree we compute the Hilbert polynomial. Since
Klya 's]/l = K[x*'s] C K][xo, ..., xn] we obtain

dt+n
n

pv,4(t) = ( > = d" —l— lower terms .
O]
Corollary. Every quasi-projective algebraic set has a finite open

covering by affine algebraic sets.



Proof of the corollary
Let

f:Zfaxa € K[xo, - -, Xn]

be a homogeneous polynomial of degree d. Consider the open set
Ur =P\ V(f) and the corresponding hyperplane

He =V (3, faya) C PN. Under the Veronese embedding U is
isomorphic to the Zariski-closed subset of A", since

Ur 2 Vg N (PY\ He) c PV He = AN,
Hence Ur is isomorphic to an affine variety.
Let A= A; \ Ay be a quasi-projective set where Ay C A; C P are
projective algebraic subsets. If Ay = V(f1,...,f,) then

.
A= U(Al N UG‘)
j=1
is an open covering. Since A1 N Uy, is a closed subset of the affine
variety Ur it is isomorphic to an affine algebraic set. O



Morphism from projective algebraic sets
Theorem. Let A be a projective algebraic set and p: A— B a
morphism to a quasi-projective algebraic set. Then ¢(A) C B is a
Zariski-closed subset.

Corollary. Let A be a projective variety. Every regular function
f: A— K is constant.

Proof of the Corollary. f defines a morphism f : A — Al C P!
The image is closed in P! hence different from Al. Since it is also
closed in Al it is a finite union of points. Since A is irreducible, it

is a single point. O
Remark. In case K = C, this corollary is similar to the maximum
principle: If f is a holomorphic function on a compact complex
connected manifold A then |f| attains its maximum, and hence f is
constant.



Graph of a morphism

Lemma. Let ¢ : A — B a morphism between quasi-projective
algebraic sets. Then the graph of ¢ is a closed subset of A x B.

Proof. To be a closed subset is a local property. Hence we may
replace B by an open affine subset U and A by an open affine
subset of ¢ 1(U) since every quasi projective algebraic set has an
open affine covering by the corollary to the Theorem on the
Veronese embeddings. Thus we may assume the A and B are
subsets of A” and A™ respectively and that ¢ is given by a tuple
of polynomial functions (f1,..., f;,). Then the graph of ¢ is
defined by the ideal

(yi — A(x1, -5 Xn)y ooy Ym — fm(x1, -y Xn))

on A x B. O



The fundamental theorem of elimination

Passing to the graph reduces the proof of the theorem above to
the following:

Theorem. Let A be a projective algebraic set and B a
quasi-projective algebraic set. Then the projection onto the second
factor A x B — B is a closed map, i.e., maps closed subsets of

A x B to closed subsets of B.

Proof. We may replace B by an open affine subset. Hence we
may assume that A C P” and B C A" are closed subsets, and it
suffices to prove that the projection P" x A™ — A™ is closed.
Any algebraic subset X C IP” x A™ is defined by finitely many
polynomials f1,...,f € K[x0, ..., Xn, Y1, -.,¥Ym] Where each f; is
homogeneous of some degree d; in xg,...,x,. By the projective
Nullstellenatz, a point g € A™ lies in the image of X iff the ideal

I(q) := (fA(x,q),...,(f(x,q)) C K[x]

does not contain any of the ideals (xo, ..., x,)9 for d > 1.



Proof of the fundamental theorem of elimination
Define
Yo=1{q€A™|1(q) B (x0,---,x)7}.

Then the image of X is

o

Y = ﬂ Yy

d=1
and it suffices to prove that each Yy is an algebraic subset of A™.
To obtain equations for Yy we multiply each f; with all monomials
of degree d — d; in x. Let T4 denote the resulting set of
polynomials. Then g ¢ Yy iff each monomial in K[xo, ..., xn|q of
degree is a linear combination of the polynomials f(x, ) with
f € T4. Comparing coefficients we obtain a
(dt") Xy (d_‘z"”L”)—matrix Mgy with entries in K[y, ..., Ym]
such that g € Yy iff rank My(g) < (“1"). Thus the

(7F7) x (F™)-minors of My define Yy. =



Computing the elimination ideal in concrete examples
The proof of the theorem does not yield a practical algorithm to
compute the image. Here is an approach which works frequently in
practise.

Definition. Let /, J be ideals in a ring. Then the saturation of /
with respect to J is

oo
lege=Ju:JM).
N=1
To compute the saturation in noetherian rings one can iterate
/k+1 = /k ")
starting with lp = I until Iyy1 = Iy. Then Iy =1: J*>.
In the situation of X C P" x A™ defined by fi, ..., f, as above, we

obtain equations of the image Y C A™ by taking the elements of
degree 0 in x of

(A, ) s (X0, xn)™.



