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Overview

Today’s topics are

1. Projective morphisms

2. Semi continuity of the fiber dimensions

3. The blow-up

4. Resolution of singularities

5. A birartional map between P1 × P1 and P2



Projective morphism
Last time we proved that a morphism ϕ : A→ B from a projective
algebraic set to a quasi-projective algebraic set B is closed, i.e.,
maps Zariski-closed subsets of A to Zariski-closed subsets of B.
Actually, we proved a stronger result.

Definition. A morphism ϕ : A→ B is called a projective
morphism if ϕ is the composition of a closed embedding
ι : A→ Pn × B with the projection onto B. Here a morphism
ι : A→ C is called a closed embedding if ι induces an
isomorphism A→ ι(A) and ι(A) is a Zariski-closed subset of C .

Theorem. A projective morphism is a closed map.

Proof. Indeed in the proof of the fundamental theorem of
elimination we replaced A ⊂ Pn with the graph of ϕ in
A× B ⊂ Pn × B. The map ι : A→ Pn × B to the graph of ϕ in
Pn × B is a closed embedding.



Projective morphisms are closed
In the remaining part of the proof all we used was that
A ∼= ι(A) ⊂ Pn × B is closed. Thus closed subsets of X ⊂ A are
also closed subsets of Pn × B and out argument showed that the
image Y of X under the projection to B is closed in B.

Definition. Let ϕ : X → Y be a morphism. The fiber of ϕ over a
point q ∈ Y is Xq := ϕ−1(q) ⊂ X . Since morphisms are continues
in the Zariski topology, the preimage of the point p is a Zariski
closed subset of X .
If ϕ is a projective morphism, say ϕ factors over a closed
embedding ι : X → Pn × Y , then the situation is better: The fiber

Xp ⊂ Pn × {p} ∼= Pn

is a projective algebraic set.



Semi continuity of the fiber dimension
Theorem. Let ϕ : X → Y be a projective morphism and r ≥ −1
an integer. Then the set

Ur = {q ∈ Y | dimXq ≤ r}
is Zarsiki-open in Y .
Proof. The set

U−1 = {q ∈ Y | dimXq ≤ −1} = {q ∈ Y | Xq = ∅}
is open in Y because it is the complement of the closed subset
ϕ(X ) ⊂ Y .
Suppose dimXq = r ≥ 0. We assume that ϕ factors over Pn × Y .
Consider a linear space L ⊂ Pn of dimension n − r − 1 with
Xq ∩ L = ∅ and

Z = X ∩ (L× Y ) ⊂ Pn × Y .

Fibers Xq with dimXq > r intersect Z . Thus U = Y \ ϕ(Z ) is an
open neighbourhood of p ∈ Ur .



Dimension of general fibers
In case of a surjective projective morphism between varieties the
result can be strengthed.

Theorem. Let ϕ : X → Y be a surjective projective morphism
between varieties. Then

dimXq ≥ dimX − dimY ,

and equality holds for q ∈ U of a non-empty open subset U of Y .
Proof. We may assume that Y is affine and that X ⊂ Pn × Y is a
closed subset. Consider the function fields

K (Y ) ⊂ K (X )

We have

trdegK K (X ) = trdegK(Y ) K (X ) + trdegK K (Y ).

Let I ⊂ K [Y ][x0, . . . , xn] be the ideal of X ⊂ Pn × Y . Consider the
ideal J ⊂ K (Y )[x0, . . . , xn] generated by I . J corresponds to a
variety V (J) defined over the function K (Y ) of dimension

dimV (J) = trdegK(Y ) K (X ) = dimX − dimY .



The proof continued
We compute a normalized Gröbner basis of J, i.e., one where the
leading coefficients of all Gröbner basis elements are 1. In doing so
we have to divide by finitely many polynomial functions of K [Y ].
Let f ∈ K [Y ] be the product of these polynomials and
Uf = Y \ V (f ) the corresponding non-empty open subset. We
claim that for a point q ∈ Uf the ideal

Iq = ({f (x , q)|f ∈ I}) ⊂ K [x0, . . . , xn]

Indeed the computation of the Gröbner basis of Iq follows the same
steps as the computation for J = (I ). We simply have to substitute
q in to the rational functions in K (Y ) which are the coefficients.
Since each coefficient has a representation as a fraction with power
of f in the denominator the coefficients can be evaluated in q.
Thus J and Iq have the same lead ideal.



The proof continued
Hence K (Y )[x0, . . . , xn]/J and K [x0, . . . , xn]/Iq have the the same
Hilbert polynomial. In particular

dimXq = dimV (J) = trdegK(Y ) K (X ) = dimX − dimY

holds for all q ∈ Y . Since Y is irreducible hence Uf dense Y we
obtain

dimXq ≥ dimX − dimY

from the semi continuity of the fiber dimension.

As a corollary of the proof we note

Corollary. Let Y be an affine variety and I ⊂ K [Y ][x0, . . . , xn] be
an ideal which is homogeneous in x0, . . . , xn. Then there exist a
non-empty open subset U ⊂ Y such that the ideals

Iq = ({f (x , q) | f ∈ I}) ⊂ K [x0, . . . , xn]

have the same Hilbert function for all q ∈ U.



Gröbner basis over prime fields
Theorem. Let f1, . . . , fr ∈ Z[x0, . . . , xn] be homogneous
polynomials and let IQ ⊂ Q[x0, . . . , xn] and Ip ⊂ Fp[x0, . . . , xn] for
p a prime number denote the ideals generated by f1, . . . , fr . Then
for all but finitely many primes the lead ideal

Lt(Ip) and Lt(IQ)

are generated by the same monomials. In particular their Hilbert
polynomials coincide.

Proof. We computed a normalized Gröbner basis of IQ. In this
process we have to devide by finitely many leading coefficients, and
the Gröbener basis of the ideal Ip where p does not divide any of
the leading coefficients, is obtained by mapping the coefficients
a
b ∈ Q to ab−1 ∈ Fp.



Gröbner basis over prime fields

Remark. Notice that a Gröbner basis over Q can have very large
coefficients: In adding or multiplying two rational numbers

a

b
+

c

d
=

ad + bc

bd
or

a

b
· c
d

=
ac

bd

one often obtains numbers with twice the number of digits in the
numerator and denominator.
By passing to a finite prime field this effect is avoided. If we are
only interested say in the degree and the dimension of the V (IQ),
then the result does not change for almost all primes. This is
frequently used in experiments in algebraic geometry.



The blow-up
Definition. Let X ⊂ P1 × A2 be defined by

det

(
z0 z1
x y

)
∈ K [z0, z1, x , y ]

and let σ : X → A2 denote the projection onto the second
component. σ is called the blow-up of A2 at the origin o.
X is covered by two affine charts Uj = X ∩ (Uzj × A2) which are
both isomorphic to A2.

K [U0] ∼= K [z , x , y ]/(y − xz) ∼= K [x , z ]

and the map σ|U0 : U0 → A2 is given by (x , z) 7→ (x , xz). Similary

K [U1] ∼= K [w , y ] and σ|U1 : U1 → A2, (w , y) 7→ (wy , y).

The fiber of σ over o = (0, 0) ∈ A2 is E = P1 × {o} ∼= P1. E is
called the exceptional curve of σ. Outside E the map σ restricts
to an isomorphism X \ E ∼= A2 \ {o}.



Strict and total transform
X \ E ⊂ P1 × A2 \ {o} is isomorphic
to the graph of the morphism

A2 \ {o}, (x , y) 7→ [x : y ].

In other words we may think of

X = V (det

(
z0 z1
x y

)
) ⊂ P1 × A2

as obtained from A2 by replacing the origin o by the projective
space E ∼= P1 of lines through o.

Definition. Let C ⊂ A2 be a plane curve. Then the closure
C ′ = σ−1(C \ {o}) ⊂ X is called the strict transform of C . The
total transform is σ−1(C ).

Proposition. Let C = V (f ) be a curve of multiplicity m at the
origin. Then the strict transform C ′ ⊂ X intersects E in precisely
m points counted with multiplicities.



Proof of the proposition
Suppose f = fm + . . .+ fd ∈ K [x , y ] with fj homogeneous of
degree j . The total transform of C in the chart U0 is defined

f (x , xz) = xm(fm(1, z) + xfm+1(1, z) + . . .+ xd−mfd(1, z)) = 0.

The exceptional curve is E is defined by x = 0 on U0. So the strict
transform C ′ is defined by

fm(1, z) + xfm+1(1, z) + . . .+ xd−mfd(1, z) = 0.

Thus the intersection point of E ∩ C ′ contained in U0 are defined
by V (fm(1, z), x). Let fm =

∏r
i=1 `

ei
i be the factorization of fm into

distinct linear factors. The intersection multiplicity

i(C ′,E ; pi ) = ei

at the point pi = [ai : bi ] ∈ P1 = E corresponding to the tangent
line V (`i ) with `i = bix − aiy since the factors `j for j 6= i are
units in OX ,pi . The result follows because

∑r
i=1 ei = m.



The effect of the blow-up on curves
Corollary. If o is an ordinary m-fold point, then E and C ′ have
transversal intersections and C ′ is non-singular at the intersection
points.
Since X is covered by charts isomorphic to A2 we can iterate this
process.
Example. Consider C = V (y3 − x5) the strict transform of C is
contained in the chart U0 where total transform is defined by
x3(z3 − x2).

The further blow-up (x , z) = (uz , u) yields u5z3(u − z2).
Blowing-up the intersection point of the second exceptional curve
E2 = {u2 = 0} with C ′′ via (u, z) = (wz , z) yields the local
equation w5z9(w − z), and all curves intersect transversal.



Resolution of singularities

Theorem. Let C ⊂ P2 be a plane algebraic curve. Then there
exists a sequence

Xr
σr // Xr−1 // . . . // X1

σ1 // P2

of blow-ups, such that the strict transform C (r) of C in Xr is a
non-singular curve.

The main difficulty in proving this theorem is to prove that some
numerical invariant improves along the process of blow-ups. In the
example above such invariant was the multiplicity of the singular
points. However in general a more subtle invariant is needed.



Resolution of singularities

Theorem. Let C ⊂ P2 be a plane algebraic curve. Then there
exists a sequence

Xr
σr // Xr−1 // . . . // X1

σ1 // P2

of blow-ups, such that the strict transform C (r) of C in Xr is a
non-singular curve.

Example. Consider y2 − x4 + x6 = 0. Substituting
(x , y) = (x , xz) leads to the strict transform z2 − x2 + x4 = 0,
which still has a double point at the origin. A second blow
(x , z) = (uz , z) gives the strict transform u2 − 1 + u4z2 = 0 which
actually is now a smooth curve.



Birational maps between smooth surfaces
A second place where the blow-up plays a crucial role is in the
description of birational maps between smooth surfaces.
Theorem(Castelnuvo)

1. Let ϕ : Z → X be a birational morphism between smooth
projective surfaces. Then there exist a sequence of blow-ups

Xr
σr // Xr−1 // . . . // X1

σ1 // X

such that Z ∼= X (r)

2. Every birational map Y 99K X between smooth projective
surfaces can be factored into birational morphisms from a
smooth projective surface Z as follows:

Z

�� ��
Y X

.

where both morphisms are sequences of blow-ups.



The birational projection of P1 × P1 99K P2

Consider a point p = (a, b) ∈ P1 × P1 ⊂ P3 and the rational map

πp : P1 × P1 99K P2

which maps a point q ∈ P1 × P1 to the line pq ∈ P2 where we
identify P2 with the set of lines in P3 through p. Its factorization is

Z

{{   
P1 × P1 P2.

where Z → P1 × P1 is the blow-up of P1 × P1 in p and Z → P2

collaps the strict transforms of the lines P1 × {b} and {a} × P1 to
two points p1, p2 ∈ P2. The exceptional curve E over p is mapped
to the line p1p2.



Projection of P1 × P1 99K P2

P2 \ p1p2 = A2 = A1 × A1

∼= (P1 \ {a})× (P1 \ {b})
= P1 × P1 \ ({a} × P1 ∪ P1 × {b})


