Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

Overview

Today we will start to solve the membership problem.

- 1. Monomials and monomial orders
- 2. Finite generation of monomial ideals
- 3. Division with remainder
- 4. Gröbner basis and Hilbert's basis theorem

Monomials

Definition. A **monomial** in $K[x_1, ..., x_n]$ is an element of the form

$$x^{\alpha} = x_1^{\alpha_1} \cdot \ldots \cdot x_n^{\alpha_n}$$

where $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n=\mathbb{Z}^n_{\geq 0}$ is a multi-exponent. Thus

$$x^{\alpha}x^{\beta} = x^{\alpha+\beta}$$
.

A **term** in $K[x_1, ..., x_n]$ is an element of the form

$$ax^{\alpha}$$

with $a \in K$. Every element $f \in K[x_1, \dots, x_n]$ is a finite sum of terms

$$f = \sum f_{\alpha} x^{\alpha}$$

where all but finitely many coefficients f_{α} are zero.

A motivating example

Consider the ideal

$$I = (x^2 + xy, y^2 + xy) \subset K[x, y]$$

in a polynomial ring in two variables. Using division with remainder we can use $x^2 + xy$ to remove from an $f \in K[x, y]$ any multiple of x^2 :

$$f = q(x^2 + xy) + r \text{ with } r \in K[x] + yK[x].$$

Likewise, we can use $y^2 + xy$ to remove multiples of y^2 . Can we use both to remove multiples of x^2 or y^2 simultaneously?

A motivating example 2

Consider the ideal

$$I = (x^2 + xy, y^2 + xy) \subset K[x, y]$$

Can we use both generators to remove multiples of x^2 or y^2 simultaneously?

Answer: No!

If yes, then $\overline{1}, \overline{x}, \overline{y}, \overline{xy}$ would generate K[x, y]/I as a K-vektor space. But this is an infinite dimensional K-vector space:

$$K[x,y]/I \rightarrow K[x,y]/(x+y) \cong K[y].$$

What went wrong?

We did not choose the leading terms x^2 and y^2 in a compatible way!

Monomial orders

Definition. A monomial order > on $K[x_1, \ldots, x_n] >$ is a complete order of the monomials in $K[x_1, \ldots, x_n]$ satisfying

$$x^{\alpha} > x^{\beta} \implies x^{\alpha}x^{\gamma} > x^{\beta}x^{\gamma}$$

for any triple of monomials. For $f=\sum f_{\alpha}x^{\alpha}$ we define the **lead term** with respect to > as

$$\mathsf{Lt}(f) = f_{\alpha} x^{\alpha} \text{ where } x^{\alpha} = \mathsf{max}\{x^{\beta} \mid f_{\beta} \neq 0\} \text{ and } \mathsf{Lt}(0) = 0.$$

Example. Lt($x^2 + xy$) = $x^2 \implies x^2 > xy \implies x > y \implies xy > y^2 \implies$ Lt($y^2 + xy$) = xy. So our choice above was not compatible with a monomial order.

part 1

Computation rules

Abusing notation we write for non-zero terms

$$ax^{\alpha} \ge bx^{\beta}$$
 if $x^{\alpha} \ge x^{\beta}$ (: $\Leftrightarrow x^{\alpha} > x^{\beta}$ or $x^{\alpha} = x^{\beta}$.)

Note that \geq is not an order on the set of non-zero terms since

$$ax^{\alpha} \geq bx^{\beta}$$
 and $bx^{\beta} \geq ax^{\alpha} \implies x^{\alpha} = x^{\beta}$

but $a \neq b$ is possible.

Proposition. Let > be a monomial order. Then

- 1. Lt(fg) = Lt(f) Lt(g),
- 2. $Lt(f+g) \le max(Lt(f), Lt(g))$ and equality holds unless Lt(f) + Lt(g) = 0.

Global monomial orders

Definition. A **global** monomial order on $K[x_1, ..., x_n]$ is a monomial order satisfying

$$x_j > 1$$
 for $j = 1, \ldots n$.

In contrast, a **local** monomial order on $K[x_1, ..., x_n]$ is a monomial order satisfying

$$x_j < 1 \text{ for } j = 1, \dots n.$$

The key property of global monomial orders is that there are **no** infinite descending sequences $m_1 > m_2 > \dots$ of monomials.

In contrast, for a local monomial order

$$1 > x_1 > x_1^2 > \ldots > x_1^k > \ldots$$

is an infinite descending sequence.

Local orders are useful for computations in powerserie rings $K[[x_1, \ldots, x_n]]$. We will consider those only later in the course.

Examples of global monomial orders

1) The lexicographic monomial order is defined by

$$x^{\alpha} >_{\text{lex}} x^{\beta}$$

if the first non-zero entry of $\alpha - \beta \in \mathbb{Z}^n$ is positive. Thus

$$x_1x_3 >_{\text{lex}} x_1 >_{\text{lex}} x_2^k >_{\text{lex}} x_2^2.$$

2) The **reversed lexicographic** order is defined as follows:

$$x^{\alpha} >_{\text{rlex}} x^{\beta}$$

if $\deg x^{\alpha}>\deg x^{\beta}$ or $\deg x^{\alpha}=\deg x^{\beta}$ and the last non-zero entry of $\alpha-\beta\in\mathbb{Z}^n$ is negative. Thus

$$x_3^3 >_{\text{rlex}} x_1^2 >_{\text{rlex}} x_2^2 >_{\text{rlex}} x_1 x_3.$$

Degree of a polynomial

Definition. For a monomial x^{α} the **degree** is defined by

$$\deg x^{\alpha} = \sum_{j=1}^{n} \alpha_j = |\alpha|.$$

For a non-zero polynomial $f = \sum f_{\alpha} x^{\alpha}$ the degee is

$$\deg f = \max\{\deg x^{\alpha} \mid f_{\alpha} \neq 0\}$$

3) Weight orders. Let $w = (w_1, ..., w_n) \in \mathbb{R}_{>0}^n$ be a weight vector and $w(\alpha) = \sum_{j=1}^n w_j \alpha_j$. We define

$$x^{\alpha} >_{w} x^{\beta}$$
 if $w(\alpha) > w(\beta)$ or $w(\alpha) = w(\beta)$ and $x^{\alpha} >_{\text{tb}} x^{\beta}$

where $>_{\rm tb}$ denotes a tiebreak order, for example $>_{\rm lex}$. If the weights w_i are \mathbb{Q} -linearly independent, then $>_{\rm tb}$ is superfluous.

Monomial ideals and Dixon's Lemma

Definition. Let J be an arbitrary set of polynomials. The ideal generated by J is

$$I = (J) = \{ f \mid \exists r \in \mathbb{N}, f_1, \dots, j_r \in J \text{ and } g_1, \dots, g_r \in K[x_1, \dots, x_n]$$
such that $f = g_1 f_1 + \dots + g_r f_r$

Definition. A monomial ideal $I \subset K[x_1, ..., x_n]$ is an ideal satisfying

$$f = \sum f_{\alpha} x^{\alpha} \in I \implies x^{\alpha} \in I \ \forall \alpha \text{ with } f_{\alpha} \neq 0$$

In other words *I* is generated by monomials.

Lemma[Hilbert's basis theorem for monomial ideals]. Every monomial ideal I is finitely generated, i.e. there exists a finite set J of monomials such that I = (J).

Proof of Dixon's Lemma.

Induction on n. Let $I \subset K[x_1, \ldots, x_n]$ be a non-zero monomial ideal, $x^{\alpha} \in I$ and $\alpha = (\alpha_1, \ldots, \alpha_n)$.

For $j=1,\ldots,n$ and $\gamma=0,\ldots,\alpha_j-1$ consider the monomial ideal $I_{j,\gamma}$ generated

$$\{x^{\beta} \subset K[x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n]|x_j^{\gamma}x^{\beta} \in I\}$$

in a polynomial ring with n-1 variables.

By induction hypothesis all $I_{j,\gamma}$ is finitely generated, say by a set of monomials $J_{j,\gamma}$. Then

$$J = \{x^{\alpha}\} \cup \bigcup_{j,\gamma} \{x_j^{\gamma} x^{\beta} \mid x^{\beta} \in J_{j,\gamma}\}$$

is a finite set of generators of I.

The descending chain condition

Proposition. Let > be a global monomial order and $m_1 \geq m_2 \geq \ldots \geq m_k \geq \ldots$ a descending chain of monomials. Then there exists $N \in \mathbb{N}$ such that

$$m_k = m_{k+1} \, \forall k \geq N.$$

Proof. A global monomial order > refines divisibility in $K[x_1, \ldots, x_n]$:

$$x^{\alpha}|x^{\beta}\iff \beta-\alpha\in\mathbb{Z}^n_{\geq 0}\implies x^{\beta-\alpha}>1\implies x^{\beta}>x^{\alpha}.$$

Consider the ideal $I=(\{m_k\mid k\in\mathbb{N}\})$. By Dixon's Lemma, I is generated by a finite set J of monomials. Set $N=\max\{\ell\mid m_\ell\in J\}$. For $k\geq N$ every monomial m_{k+1} is divisible by a generator $m_\ell\in J$. Thus we have $m_{k+1}\geq m_\ell\geq m_N\geq m_{k+1}$ and equality holds: $m_{k+1}=m_N$.

Division with remainder

Theorem. Let > be a global monomial order on $K[x_1, \ldots, x_n]$, $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ non-zero polynomials. For every $f \in K[x_1, \ldots, x_n]$ there exist uniquely determined $g_1, \ldots, g_r \in K[x_1, \ldots, x_n]$ and a unique remainder $h \in K[x_1, \ldots, x_n]$ satisfying

- 1) $f = g_1 f_1 + \ldots + g_r f_r + h$
- 2a) No term of $g_j \operatorname{Lt}(f_j)$ is divisible by a lead term $\operatorname{Lt}(f_i)$ for some i < j.
- 2b) No term of h is divisible by a lead term $Lt(f_j)$.

Proof of the Division with Theorem

Uniqueness: Taking difference it suffices that

$$0 = g_1 f_1 + \ldots + g_r f_r + h \Rightarrow g_1 = 0, \ldots g_r = 0, h = 0.$$

Since the non-zero lead terms $\mathrm{Lt}(g_jf_j)=\mathrm{Lt}(g_j)\,\mathrm{Lt}(f_j)$ and $\mathrm{Lt}(h)$ belong to different monomials by condition 2), they cannot cancel in the sum. So all are zero, hence all g_j and h are zero.

Existence: The theorem is trivially true for monomial ideals. Thus we can write

$$f = g_1^{(0)} \operatorname{Lt}(f_1) + \ldots + g_r^{(0)} \operatorname{Lt}(f_r) + h^{(0)}$$

satisfying 2a) and 2b). Consider

$$f^{(1)} = f - (g_1^{(0)}f_1 + \ldots + g_r^{(0)}f_r + h^{(0)}).$$

In the difference on the right hand side, the lead term cancels. Hence either $f^{(1)}=0$ and we are done, or

$$\operatorname{Lt}(f^{(1)}) < \operatorname{Lt}(f).$$

Proof of the Division with Theorem 2

Continuing with $f^{(1)}$ we obtain a sequences of polynomials

$$f^{(k+1)} = f^{(k)} - (g_1^{(k)}f_1 + \ldots + g_r^{(k)}f_r + h^{(k)})$$

where

$$f^{(k)} = g_1^{(k)} \operatorname{Lt}(f_1) + \ldots + g_r^{(k)} \operatorname{Lt}(f_r) + h^{(k)}$$

whose lead terms form a descending sequence

$$Lt(f) > Lt(f^{(1)}) > Lt(f^{(2)}) > \dots$$

So after a finite number of steps we arrive at $f^{(N+1)} = 0$, and

the
$$g_j = \sum_{k=0}^{N} g_j^{(k)}$$
 and $h = \sum_{k=0}^{N} h^{(k)}$

are the desired coefficients and remainder.

Gröbner basis and Hilbert's basis theorem

Definition. Let > be a global monomial order and $I \subset K[x_1, \ldots, x_n]$ an ideal. The **lead term ideal** of I is the ideal generated by the lead terms of elements of I:

$$\mathsf{Lt}(I) = (\{\mathsf{Lt}(f) \mid f \in I\}).$$

Elements $f_1, \ldots, f_r \in I$ are a **Gröbner basis** of I (with respect to >) if

$$Lt(I) = (Lt(f_1), \ldots, Lt(f_r)).$$

Theorm (Hilbert, 1899). Every ideal in $K[x_1, ..., x_n]$ is finitely generated.

Gordon's proof of Hilbert's basis theorem

Let $I \subset K[x_1, ..., x_n]$ be an ideal. Consider the lead term ideal Lt(I). This is a monomial ideal, hence it is finitely generated by Dixon's Lemma.

Let $f_1, \ldots, f_r \in I$ be elements whose lead terms generate Lt(I). We claim

$$I=(f_1,\ldots,f_r).$$

 $(f_1,\ldots,f_r)\subset I$ is clear since $f_1,\ldots,f_r\in I$. For the other inclusion,

let $f \in I$ be an arbitrary element. Consider the remainder h of f divided by f_1, \ldots, f_r ,

$$h=f-(g_1f_1+\ldots+g_rf_r).$$

Then on one hand we have $h \in I$ and on the other hand no non-zero term of h lies in $Lt(I) = (Lt(f_1), \ldots, Lt(f_r))$ by condition 2b). Thus Lt(h) = 0. Hence h = 0 and $f \in (f_1, \ldots, f_r)$.