Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

Overview

Today I will make few remarks about the Hilbert

1. The Hilbert scheme
2. Smooth and singular points
3. Bertini's theorem
4. Grassmanians

Subschemes of \mathbb{A}^{n}

We have frequently seen that non-radical ideals occur naturally.
Example. Consider the ideal $\left(x^{2}, x y\right) \subset K[x, y, z]$. It arises if we intersect the algebraic set $V(x z, y z)$ with the hyperplane $V(z-x)$.
On the algebra side we have

$$
K[x, y, z] /(x z, y z, z-x) \cong K[x, y] /\left(x^{2}, x y\right)
$$

corresponding to this intersection.
It is thus naturally to extend our algebra geometry dictionary beyond radical ideals as follows:
$\left\{\right.$ radical ideals of $\left.K\left[x_{1}, \ldots, x_{n}\right]\right\} \stackrel{1: 1}{\longleftrightarrow}$ \{algebraic subsets of $\left.\mathbb{A}^{n}\right\}$
$\left\{\right.$ arbitrary ideals of $\left.K\left[x_{1}, \ldots, x_{n}\right]\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\right.$ subsschemes of $\left.\mathbb{A}^{n}\right\}$.
The coordinate ring of the subscheme $X \subset \mathbb{A}^{n}$ corresponding to the ideal $J \subset K\left[x_{1}, \ldots, x_{n}\right]$ is the ring $K[X]=K\left[x_{1}, \ldots, x_{n}\right] / J$.

Morphism and local rings of a subschemes of \mathbb{A}^{n}

A morphism $\varphi: X \rightarrow Y$ between a subscheme $X \subset \mathbb{A}^{n}$ and a subscheme $Y \subset \mathbb{A}^{m}$ are by definition a ring homomorphism

$$
\varphi^{*}: K[Y] \rightarrow K[X] .
$$

The local ring $\mathcal{O}_{X, p}$ of a subscheme at a point $p \in V(J)$ can be defined as the localization in the corresponding maximal ideal \mathfrak{m} of $K[X]$:

$$
\mathcal{O}_{X, p}=K[X]_{\mathfrak{m}} .
$$

The only disadvantage when considering subschemes, is that $K[X]$ can no longer be regarded as a subring of the functions

$$
\{f: V(J) \rightarrow K\} .
$$

In our example above with $K[X]=K[x, y] /\left(x^{2}, x y\right)$ the element $\bar{x} \in K[X]$ would correspond to the zero function, because $(\bar{x})^{2}=0$. But $\bar{x} \neq 0 \in K[X]$. We allow non-trivial nilpotent elements in the coordinate ring of a subscheme.

Subschemes of \mathbb{P}^{n}

Definition. A subscheme X of \mathbb{P}^{n} is a collection of subschemes in the affine charts $U_{i} \cong \mathbb{A}^{n}$ that coincide in their intersections $U_{i} \cap U_{j}$.
Definition. A homogeneous ideal $I \subset K\left[x_{0}, \ldots, x_{n}\right]$ is saturated if it coincides with its saturation

$$
I_{\text {sat }}=I:\left(x_{0}, \ldots, x_{n}\right)^{\infty}=\bigcup_{N=1}^{\infty}\left(I:\left(x_{0}, \ldots, x_{n}\right)^{N}\right)
$$

Proposition. There is a bijection between saturated homogeneous ideals of $K\left[x_{0}, \ldots, x_{n}\right]$ and subschemes of \mathbb{P}^{n}.
Remark. A homogeneous ideal I is saturated iff the irrelevant ideal $\left(x_{0}, \ldots, x_{n}\right)$ is not an associated prime ideal of I. The graded ring $K[X]=K\left[x_{0}, \ldots, x_{n}\right] / I_{\text {sat }}$ is the called the homogeneous coordinate ring of the subscheme $X \subset \mathbb{P}^{n}$ corresponding to the subscheme defined by I. The Hilbert polynomial $p_{X} \in \mathbb{Q}[t]$ is the Hilbert polynomial of $K[X]$.

The Hilbert scheme

A fundamental result in algebraic geometry due Grothendiek is the following.
Theorem. Let $p \in \mathbb{Q}[t]$ be a polynomial of degree $<n$. The set of subschemes

$$
\operatorname{Hilb}_{p}\left(\mathbb{P}^{n}\right)=\left\{X \subset \mathbb{P}^{n} \mid p_{X}=p\right\}
$$

carries the structure of a projective scheme.

Idea of the proof.

Step 1. Let $p \in \mathbb{Q}[t]$. There exists an integer r such that the saturated ideal $I=I_{X}$ of any subscheme $X \subset \mathbb{P}^{n}$ with $p_{X}=p$ satisfies the following:

$$
I_{d} \subset K\left[x_{0}, \ldots, x_{n}\right]_{d} \text { has codimension } p(d) \text { for all } d \geq r
$$

Key point of this step is that the bound r depends only on p. This is proved with the concept of the Castelnuovo-Mumford regularity, which builds upon coherent sheaves and their cohomology.

The Hilbert scheme

As additional property one obtains

$$
I_{\geq d}=\bigoplus_{d^{\prime} \geq d} I_{d^{\prime}}=\left(I_{d}\right) \text { for } d \geq r
$$

Remark. Since a homogeneous ideal J and $J \cap\left(x_{0}, \ldots, x_{n}\right)^{N}$ have the same Hilbert polynomial the statements (\dagger) and (\ddagger) fail if we consider non-saturated ideals.
Step 2. We fix now an $d \geq r$. For each polynomial $p \in \mathbb{Q}[t]$ we thus have an injection

$$
\left\{X \subset \mathbb{P}^{n} \mid p_{X}=p\right\} \hookrightarrow \mathbb{G}\left(\binom{n+d}{n}-p(d),\binom{d+n}{n}\right)
$$

into a Grassmannian by mapping the subscheme X to the degree d part of ist homogenous ideal I_{X}

$$
X \mapsto\left(I_{X}\right)_{d} \subset K\left[x_{0}, \ldots, x_{n}\right]_{d}
$$

This is a codimension $p(d)$ subvectorspace, hence a point in the Grassmannian above.

The scheme structure of the Hilbert scheme

To get equations of the Hilbert scheme, we note that a subspace W lies in the image if and only if the ideal (W) generated by W has Hilbert function values $h_{(W)}\left(d^{\prime}\right)=\binom{n+d^{\prime}}{n}-p\left(d^{\prime}\right)$ for $d^{\prime} \geq d$. Representing W by a $\left(\binom{n+d}{d}-p(d)\right) \times\binom{ n+d}{n}$ coefficient matrix, we see that for $d^{\prime}=d+1$ this gives the condition that a

$$
(n+1)\left(\binom{n+d}{n}-p(d)\right) \times\binom{ n+d+1}{n} \text {-matrix }
$$

in these coefficients has rank precisely $\binom{n+d+1}{n}-p(d+1)$. Thus the corresponding minors give equations for the Hilbert scheme.
We leave it open to explain why the rank for any W satisfying these equations cannot be smaller, and why these equations define the Hilbert scheme correctly from a conceptual point of view. The key concept for the later is the notion of a representable functor.

$\operatorname{Hilb}_{3 t+1}\left(\mathbb{P}^{3}\right)$

$p(t)=3 t+1$ is the Hilbert polynomial of the rational normal curve in \mathbb{P}^{3}. We give a description of the open part of this Hilbert scheme of all saturated ideals with lead ideal $\operatorname{Lt}(I)=\left(x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}\right)$. If I is such an ideal then its equation take the form

$$
\begin{gathered}
x_{0}^{2}+a_{1} x_{0} x_{2}+a_{2} x_{1} x_{2}+a_{3} x_{0} x_{3}+a_{4} x_{1} x_{3}+a_{5} x_{2}^{2}+a_{6} x_{2} x_{3}+a_{7} x_{3}^{2} \\
x_{0} x_{1}+b_{1} x_{0} x_{2}+b_{2} x_{1} x_{2}+b_{3} x_{0} x_{3}+b_{4} x_{1} x_{3}+b_{5} x_{2}^{2}+b_{6} x_{2} x_{3}+b_{7} x_{3}^{2} \\
x_{1}^{2}+c_{1} x_{0} x_{2}+c_{2} x_{1} x_{2}+c_{3} x_{0} x_{3}+c_{4} x_{1} x_{3}+c_{5} x_{2}^{2}+c_{6} x_{2} x_{3}+c_{7} x_{3}^{2}
\end{gathered}
$$

with coefficients a_{1}, \ldots, c_{7}. The Buchberger test gives $2 \cdot 10$ equations for the coefficients obtained from the possible 10 different remainders of the division by $x_{0}^{2,} x_{0} x_{1}, x_{1}^{2}$ in degree 3 . As it turns out the ideal is generated by only nine equations

$$
a_{5}+a_{2} b_{1}-a_{1} b_{2}+b_{2}^{2}-a_{2} c_{2}, \ldots, c_{7}+b_{3}^{2}-a_{3} c_{3}+b_{4} c_{3}-b_{3} c_{4}
$$

which say that a_{5}, \ldots, c_{7} are quadratic polynomials in a_{1}, \ldots, c_{4}.

$\operatorname{Hilb}_{3 t+1}\left(\mathbb{P}^{3}\right)$

To phrase this differently: The open subset of $\operatorname{Hilb}_{3 t+1}\left(\mathbb{P}^{3}\right)$ corresponding to subschemes with lead ideal $\operatorname{Lt}(I)=\left(x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}\right)$ is isomorphic to a \mathbb{A}^{12} and the best way to phrase the equations in the coefficients is to say that the three generators of I can be written as the 2×2-minors of the matrix

$$
\left(\begin{array}{cc}
-x_{1}-x_{2} b_{1}-x_{3} b_{3} & -x_{2} c_{1}-x_{3} c_{3} \\
x_{0}+x_{2} a_{1}+x_{3} a_{3}-x_{2} b_{2}-x_{3} b_{4} & -x_{1}+x_{2} b_{1}+x_{3} b_{3}-x_{2} c_{2}-x_{3} c_{4} \\
x_{2} a_{2}+x_{3} a_{4} & x_{0}+x_{2} b_{2}+x_{3} b_{4}
\end{array}\right) .
$$

Indeed, for example the coefficients of a_{5} of x_{2}^{2} in the minor with lead term x_{0}^{2} is $a_{5}=b_{2}\left(a_{1}-b_{2}\right)-a_{2}\left(b_{1}-c_{2}\right)$.
Thus $\operatorname{Hilb}_{3 t+1}\left(\mathbb{P}^{3}\right)$ has a 12-dimensional component in which the $\operatorname{PGL}(4, K)$-orbit of the rational normal curve is dense. Note that $\operatorname{dim} \operatorname{PGL}(4, K)-\operatorname{dim} \operatorname{PGL}(2, K)=15-3=12$

Components of $\operatorname{Hilb}_{3 t+1}\left(\mathbb{P}^{3}\right)$

Actually, there are two components:

$$
\operatorname{Hilb}_{3 t+1}\left(\mathbb{P}^{3}\right)=H_{12} \cup H_{15},
$$

the component of dimension 12 from above and a further component of dimension 15. A general subscheme $X \in H_{15}$ is the union $X=E \cup\{p\}$ of a plane cubic curve E and a disjoint point. The choice of E depends on $3+9$ parameters, since we have to specify a plane in \mathbb{P}^{3} and a cubic equation in that plane. The choice of p gives further 3 parameters. This fits with $15=3+9+3$.

Intersection of the components of $\operatorname{Hilb}_{3 t+1}\left(\mathbb{P}^{3}\right)$

To see the intersection of both components we look at the open chart of the Hilbert scheme of X with lead ideal

$$
\operatorname{Lt}\left(I_{X}\right)=\left(x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{3}\right)
$$

This time we introduce $3 \cdot 7+10$ variables for the possible coefficients. The Buchberger test computation, yields a system of equations for the coefficients. Its primary decomposition give two smooth components isomorphic to \mathbb{A}^{12} and \mathbb{A}^{15} intersecting in smooth subvariety isomorphic to \mathbb{A}^{14}. A general scheme corresponding to a point in the intersection consist of a nodal plane curve together with an embedded point at the node sticking out of the plane.

Initial ideals

Let $I=I_{\text {sat }}$ be a saturated homogeneous ideal in $K\left[x_{0}, \ldots, x_{n}\right]$. The Hilbert scheme allows us to interpret the association

$$
I \rightsquigarrow \operatorname{Lt}(I)
$$

in a more conceptual way. Let $>_{w}$ be a weight order which has the same lead terms as the given monomial order for the Gröbner basis of I. We may assume that the weight (w_{0}, \ldots, w_{n}) are integers and all positive, since adding the vector $(1, \ldots, 1)$ does not change ordering for mononmials of a given degree. Consider the one parameter subgroup

$$
T=\left\{\left.\left(\begin{array}{ccc}
t^{w_{0}} & & 0 \\
& \ddots & \\
0 & & t^{w_{n}}
\end{array}\right) \right\rvert\, t \in K^{*}\right\}
$$

of the group of diagonal matrices in $\mathrm{GL}(n+1, K)$.
We ask how the ideal moves under the substitution $x_{i} \mapsto t^{-w_{i}} x_{i}$.

The corresponding 1-parameter family of schemes

Let $f=\sum_{|\alpha|=d} f_{\alpha} X^{\alpha} \in I$ be a homogeneous element and let $f_{\beta} x^{\beta}=\operatorname{Lt}(f)$. Then
$f^{(t)}=t^{<\beta, w>} f\left(t^{-w_{0}} x_{0}, \ldots, t^{-w_{n}} x_{n}\right)=\sum_{\alpha} f_{\alpha} t^{<\beta-\alpha, w>} x^{\alpha} \in K\left[t, x_{0}, \ldots,>\right.$
because $x^{\beta}>_{w} x^{\alpha}$ for all $\alpha \neq \beta$ with $f_{\alpha} \neq 0$. Now consider a Gröbner basis f_{1}, \ldots, f_{r} of I and the subscheme

$$
Y \subset \mathbb{P}^{n} \times \mathbb{A}^{1}
$$

the ideal $J=\left(f_{1}^{(t)}, \ldots, f_{r}^{(t)}\right) \subset K\left[t, x_{0}, \ldots, x_{n}\right]$. The fibers Y_{q} for $q \in \mathbb{A}^{1} \backslash\{o\}$ all isomorphic to $Y_{1}=X$ our original scheme, and special fiber Y_{0} is defined corresponds to $\operatorname{Lt}(I)$.
Thus

$$
\lim _{t \rightarrow 0} Y_{t}=X_{0} \in \operatorname{Hilb}_{p_{X}}\left(\mathbb{P}^{n}\right)
$$

Degeneration to monomial ideals

Corollary. Let $I=I_{\text {sat }} \subset K\left[x_{0}, \ldots, x_{n}\right]$ be homogeneous saturated ideal, X the corresponding subsscheme of \mathbb{P}^{n} and p_{X} its Hilbert polynomial. The set of possible lead ideals

$$
\left\{\mathrm{Lt}_{>}(I) \mid>\text { is a monomial order }\right\}
$$

coincides with the set of monomial limits of X in $\operatorname{Hilb}_{p_{X}}\left(\mathbb{P}^{n}\right)$ along one parameter subgroups of the torus

$$
\left\{\left.\left(\begin{array}{ccc}
a_{0} & & 0 \\
& \ddots & \\
0 & & a_{n}
\end{array}\right) \right\rvert\, a_{i} \in K^{*}\right\} \subset \mathrm{GL}(n+1, K)
$$

A non-monomial limit

Consider the rational normal curve in \mathbb{P}^{3} defined by the 2×2-minors of the matrix

$$
\left(\begin{array}{ccc}
x_{3} & x_{0} & x_{1} \\
x_{0} & x_{1}+x_{3} & x_{2}
\end{array}\right)
$$

Substituting $x_{0} \mapsto x_{0}, x_{1} \mapsto t x_{1}, x_{2} \mapsto t x_{2}, x_{3} \mapsto t x_{3}$ and computing the Gröbner basis of the ideal I_{t} with respect to the induced order we get

$x_{0}^{2}-t^{2} x_{1} x_{3}-t^{2} x_{3}^{2}$	$-x_{1}$	$-x_{2}$	0	0
$x_{0} x_{1}-t x_{2} x_{3}$	x_{0}	$t x_{1}+t x_{3}$	$-x_{2}$	$-x_{1}^{2}-x_{1} x_{3}$
$x_{0} x_{2}-t x_{1}^{2}-t x_{1} x_{3}$	$t x_{3}$	x_{0}	x_{1}	$x_{2} x_{3}$
$x_{1}^{3}-x_{2}^{2} x_{3}+x_{1}^{2} x_{3}$			t	x_{0}

A non-monomial limit

Thus

$$
I_{0}=\left(x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{3}-x_{2}^{2} x_{3}+x_{1}^{2} x_{3}\right)=\left(x_{0}, x_{1}^{3}-x_{2}^{2} x_{3}+x_{1}^{2} x_{3}\right) \cap\left(x_{0}^{2}, x_{1}, x_{2}\right)
$$

a nodal plane curve with an embedded point at node

$$
p=[0: 0: 0: 1] .
$$

Stratification of the Hilbert scheme

Like the Grassmannian the Hilbert scheme allows a stratification. Fix a Hilbert polynomial p and a global monomial order, for example $>_{\text {lex }}$ or $>_{\text {rlex }}$. There are only finitely many saturated monomial ideals J with Hilbert polynomial p. Choose one of these monomial ideal J. Then the set

$$
S_{J}=\left\{I \in \operatorname{Hilb}_{p}\left(\mathbb{P}^{n}\right) \mid \operatorname{Lt}(I)=J\right\}
$$

of saturated ideals $I_{\text {sat }}$ with $L t(I)=J$ are precisely those ideals which approach J under a suitable 1-parameter subgroup. The strata have a natural structure of an affine scheme.

A famous theorem of Hartshorne says that the Hilbert schemes $\operatorname{Hilb}_{p}(X)$ are connected. The proof builds upon the idea to connect these monomial ideals via a chain of 1-parameter families.

