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Overview

Today we will talk about smooth points and prove the theorem of
Bertini.

1. Smooth points and the Zariski tangent space.

2. Bertini’s theorem and the geometric interpretation of the
degree

3. The dual variety



Differentation
Let K be arbitrary field. Differentiation in K [x ] can be defined
without analysis.
Definition. For f =

∑
n∈N xn we define the derivative

f ′ =
∑
n∈N

nanx
n−1.

The usual differentiation rules hold with one exception if
charK = p > 0:
Proposition. Let f , g ∈ K [x ] be polynomials. Then

1) (f + g)′ = f ′ + g ′,
2) (fg)′ = f ′g + fg ′,
3) If charK = 0 then f ′ = 0 iff f = a0 is a constant polynolmial,
4) If charK = p > 0 then f ′ = 0 ⇐⇒ f ∈ K [xp].

Proof. 1) is clear. By 1) it suffices to prove 2) for monomials:

(xn+m)′ = (n + m)xn+m−1 = nxn−1xm + mxnxm−1

= (xn)′xm + xn(xm)′.



Differentation and gradient
3) and 4) are clear from the formula because (xnp)′ = npxnp−1 = 0
in case of charK = p > 0.
Remark. In case of a finite field or an algebraically closed field of
charK = p we have

f ∈ K [xp] ⇐⇒ f = gp for some g ∈ K [x ]

because the map K → K , a 7→ ap is surjective.

For multivariate polynomials f ∈ K [x1, . . . , xn] partial derivatives
∂f
∂xi

are defined analogously. The gradient

(
∂f

∂x1
, . . . ,

∂f

∂xn
)

of f is identically zero in charK = p iff f ∈ K [xp1 , . . . , x
p
n ].



Differential and tangent space
Definition. Let f ∈ K [x1, . . . , xn]. We define the differential of f
at a point p = (a1, . . . , an) ∈ An as

dpf =
n∑

i=0

∂f

∂xi
(p)(xi − ai ).

In other words dpf is the linear part in the Taylor expansion

f = f (p) + dpf + terms of degree ≥ 2 in the x − ai

of f .
For a hypersurface H ⊂ An with I(A) = (f ) we define the
tangent space of H at a point p ∈ H as the linear subspace

TpH = V (dpf ).



The tangent space of an algebraic set
Definition. Let A ⊂ An. The tangent space of A at a point p ∈ A
is defined by

Tp(A) = V ({dpf | f ∈ I(A)}).
The local dimension of A at p is defined as

dimp A = {dimC | is an irreducible component of A passing through p}
A is smooth at p if dimTpA = dimp A.

Proposition. Let A ⊂ An be an algebraic set and let
f1, . . . , fr ∈ I(A) polynomials vanishing on A. Then

n − rank(
∂fi
∂xj

(p)) ≥ dimp A

and A is smooth at p if equality holds.
If i1 < . . . < ik , j1 < . . . < jk correspond to the indices of a
maximal size non-vanishing minor of the jacobian matrix ( ∂fi∂xj

(p))

then in case of K = R or C the implicit function theorem says that
one can solve the system of equations fi1 = . . . = fik = 0 locally:



Jacobian criterium

One can express xj1 , . . . , xjk as differentiable or holomorphic
functions of the x ′j s with j /∈ {j1, . . . , jk} respectively and every
solution of fi1 = . . . = fik = 0 near p arises as a point on the
corresponding graph.

Proof. We have

n − rank(
∂fi
∂xj

(p)) ≥ dimTpA ≥ dimp A

The first inequality is true by the definition of TpA. It could be
strict since we did not assumed that f1, . . . , fr generate I(A). The
second inequality holds in a much more general setting, which we
briefly discuss below.



Krull dimension and height
Definition. Let R be a commutative ring. A chain of prime
ideals in R of length c is a chain with strict inclusions

p0 ( p1 ( . . . ( pc .

The Krull dimension of R is

dimR = sup{c | ∃ chain of prime ideals in R of length c}
The height of a prime ideal q ⊂ R is

height(q) = sup{c | ∃ chain of prime of length c with pc = q}.
The height of an arbitrary ideal I ⊂ R is

height(I ) = min{height(q) | q is a prime ideal with I ⊂ q}.
Remark. Notice for prime ideals p ⊂ R:

dimR ≥ dimR/p + height(p)

and
height(p) = dimRp.



Krull dimension of K [x1, . . . , xn]
Proposition. dimK [x1, . . . , xn] = n.

Proof. (0) ( (x1) ( . . . ( (x1, . . . , xk) ( . . . ( (x1, . . . , xn) is a
chain of prime ideals of length n. Thus dimK [x1, . . . , xn] ≥ n. To
see equality we note that we obtained

p ⊂ q and dimV (p) = dimV (q) =⇒ p = q

from the lying over theorem. Thus any chain prime ideals can have
length at most n = dimAn.

Corollary. dimK [A] = dimA holds for algebraic subsets A ⊂ An.

More efforts are needed to prove that any maximal chain of prime
ideals in K [x1, . . . , xn], i.e., a chain which cannot be made longer
by inserting a prime ideal, has length precisely n. The key is the so
called refined version of the Noether normalisation. As a corollary
we obtain for varieties
Theorem. Every maximal chain of prime ideals in the coordinate
ring of affine variety K [C ] has length dimC.



Dimension of the local ring
Corollary. Let A ⊂ An be an algebraic set. Then

dimAp = dimOA,p.

Proof. Prime ideals in OA,p correspond to prime ideals on K [A]
contained in the maximal ideal mA corresponding to p. Hence a
maximal chain in OA,p correspond to a chain

p0 ( . . . ( pc

in K [x1, . . . , xn] with I(A) ⊂ p0 a minimal prime of I(A) and
pc = m = I(p). So C = V (p0) is an irreducible component of A
passing through p and the chain above corresponds to the chain

(0) ( p1/p0 ( . . . ( m/p0

in K [C ] which has length dimK [C ] = dimC by the theorem.



Krull’s principal ideal theorem
Theorem. Let R be a noetherian ring. Every minimal prime p of a
principal ideal (f ) ⊂ R has height

height(p) ≤ 1.

Equality holds if f is a non-zero divisor. More generally, if p is a
minimal prime of an ideal (f1, . . . , fc) ⊂ R generated by c
elements, then

height(p) ≤ c .

Corollary. Let (R,m, k) be a noetherian local ring. Then

dimk m/m
2 ≥ dimR.

Proof. By Nakayama’s Lemma m is generated by c = dimk m/m
2

elements. Since m is the unique maximal ideal of R we obtain

dimR = height(m) ≤ c

from the principal ideal theorem.



Regular local rings
Definition. A regular local ring is noetherian local ring (R,m, k)
with dimk m/m

2 = dimR.
Proposition. A point p ∈ A of an algebraic set A ⊂ An is a
smooth point of A iff OA,p is a regular local ring.
Proof. Since n −mA,p/m

2
A,p is the codimension of Tp(A) we have

dimTpA = dimAp iff OA,p is a regular local ring.

The K -vector space mA,p/m
2
a,p can be interpreted as the vector

space of linear functions on Tp(A) regarded as a K -vector space
with origin p. Thus the dual vector space (mA,p/m

2
A)∗ ∼= Tp(A) is

called the Zariski tangent space of A at p. Points p ∈ A where A
is not smooth are called singular points of A.

Example. Let H ⊂ An be a hypersurface and (f ) = I(A) be its
ideal in K [x1, . . . , xn]. Then the set of singular points is

Hsing = V (f ,
∂f

∂x1
, . . . ,

∂f

∂xn
).



Singular points

Notice that (f ) = (f , ∂f∂x1 , . . . ,
∂f
∂xn

) holds iff ∂f
∂x1

= 0, . . . , ∂f∂xn = 0

since the partial derivative ∂f
∂xi

has smaller degree in xi than f .

Thus (f ) = (f , ∂f∂x1 , . . . ,
∂f
∂xn

) implies that charK = p and

f ∈ K [xp1 , . . . , x
p
n ]. For K algebraically closed this gives f = gp

contradicting that f is square free. Thus we have

Proposition. The set of smooth points of a reduced hypersurface
H ⊂ An is a Zariski open dense subset of H.

Theorem. Let A ⊂ An be a affine variety. Then the set smooth
points of A is a Zariski open dense subset of A.



Singular points
Proof. One can show that every variety is birational to a
hypersurface H. In case of charK = 0 this follows from the
existence of a primitive elements for the field extensions
K (xn−d+1, . . . , xn) ⊂ K (A) where A→ Ad is a suitable linear
projection. In positive characteristic the construction of the
birational morphism is more complicated.
For points p in the open set U ⊂ A, which is isomorphic an open
set of H we have

OA,p
∼= OH,p

and the result follows from the proposition.

In case of projective varieties X ⊂ Pn one defines singular points
the same way. The embedded tangent space Tp(X ) is defined as
the projective closure of Tp(X ∩ Ui ) ⊂ Ui

∼= An in Pn.
Notice that Tp(X ) ∼= Pd is a linear subspace of dimension
d = dimX at smooth points p of X .



The dual projective space
Definition. Let Pn be a projective space. Then the projective
space of hyperplanes H ⊂ Pn is a called the dual projective space

P̌n = {H ⊂ Pn | H is a hyperplane}.
Remark. For a point p ∈ Pn the space of hyperplanes passing
through p

Hp = {H ∈ P̌ | p ∈ H} ⊂ P̌n

is a hyperplane in P̌n and any hyperplane in P̌n arizes this way:
The subvariety

F = V (a0x0 + . . .+ anxn) ⊂ Pn × P̌n

can be interpreted in two way

F = {(p,H) ∈ Pn × P̌n | p ∈ H} = {(p,H) ∈ Pn × P̌n | H ∈ Hp}
The fibers of the projection F→ P̌n onto the second factor are
hyperplanes in Pn and the fibers of the projection to the first factor
F→ Pn are hyperplanes in P̌n.



Bertini’s theorem
Theorem. Let X ⊂ Pn be a projective variety of dimension d. Let
Xsing denote its set of singular points. There exists an non-empty
open subset U ⊂ P̌n of hyperplanes such that X ∩ H is smooth
outside Xsing ∩ H for every H ∈ U. In particular if X is smooth
then X ∩ H is smooth as well for all H ∈ U.

Proof. Consider the open set X ∗ = X \ Xsing of smooth point of
X and the variety

D∗ = {(p,H) ∈ X ∗ × P̌n | TpX ⊂ H} //

π1
��

P̌n

X ∗

.

with its two projections. A point (p,H) ∈ D∗ is pair such that
X ∩ H is singular in p.



Proof of Bertini’s theorem
The fiber of π1 : D∗ → X ∗ over a point p ∈ X ∗ is a projective
space of dimension n − d − 1

{H ⊂ Pn | H ⊃ Tp(X )} ∼= Pn−d−1

because H is contained in the fiber iff H is defined by a linear
combination of the n − d equations of TpX ∼= Pd ⊂ Pn.
Thus dimD∗ = d + n − d − 1 = n − 1. We take

D = D∗ ⊂ X × P̌n ⊂ Pn × P̌n.

Then dimD = dimD∗ and the projection π2(D) ⊂ P̌n is a Zariski
closed subset of dimension

dimπ2(D) ≤ dimD = n − 1

and U = P̌n \ π2(D) is the desired open subset.



Geometric interpretation of the degree
Theorem. Let X ⊂ Pn be a projective variety of dimension d.
Then a general linear subspace Pn−d intersects X in degX many
distinct points transversally.
Proof. Let H ⊂ Pn be a general hyperplane. In particular H does
not contain any component of Xsing . Let C1 ∪ . . .∪ Cr = X ∩H be
the irreducible components. Then

degX =
r∑

j=1

i(X ,H;Cj) degCj

holds by Bézout’s theorem. By Bertini’s theorem the intersection is
smooth. In particular the intersection is transversal at smooth
points of each Cj and the intersection multiplicity is 1. The result
follows now by induction. A general complimentary Pn−d is the
intersection of d general hyperplanes H1 ∩ . . . ∩ Hd such that Hi

intersects each component of X ∩H1 ∩ . . .∩Hi−1 transversally.



The dual variety
Remark. Actually the intersection X ∩ H is irreducible and
X ∩ Pn−d+1 is an irreducible smooth curve.

Definition. X̌ = π2(D) is called the dual variety of X .

For C ⊂ P2 an irreducible curve which is not a line, the dual
variety is again a curve Č ⊂ P̌2.

Theorem. Let C ⊂ P2 be irreducible curve over a field of
characteristic 0. Then the double dual curve

ˇ̌C = C

gives the original curve back.



Theorem of Brianchon

Theorem. The three diagonals of a hexagon which is
circumscribed around a conic intersect in a point

This theorem follows via duality from Pascal’s theorem.
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