Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

Today we will talk about smooth points and prove the theorem of Bertini.

- 1. Smooth points and the Zariski tangent space.
- 2. Bertini's theorem and the geometric interpretation of the degree

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. The dual variety

Differentation

Let K be arbitrary field. Differentiation in K[x] can be defined without analysis.

Definition. For $f = \sum_{n \in \mathbb{N}} x^n$ we define the derivative

$$f' = \sum_{n \in \mathbb{N}} na_n x^{n-1}.$$

The usual differentiation rules hold with one exception if char K = p > 0: **Proposition.** Let $f, g \in K[x]$ be polynomials. Then 1) (f + g)' = f' + g', 2) (fg)' = f'g + fg', 3) If char K = 0 then f' = 0 iff $f = a_0$ is a constant polynolmial, 4) If char K = p > 0 then $f' = 0 \iff f \in K[x^p]$. **Proof.** 1) is clear. By 1) it suffices to prove 2) for monomials: $(x^{n+m})' = (n+m)x^{n+m-1} = nx^{n-1}x^m + mx^nx^{m-1}$

$$y = (n + m)x = nx + mx$$

= $(x^{n})'x^{m} + x^{n}(x^{m})'.$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

Differentation and gradient

3) and 4) are clear from the formula because $(x^{np})' = npx^{np-1} = 0$ in case of char K = p > 0.

Remark. In case of a finite field or an algebraically closed field of char K = p we have

$$f \in K[x^p] \iff f = g^p$$
 for some $g \in K[x]$

because the map $K \to K$, $a \mapsto a^p$ is surjective.

For multivariate polynomials $f \in K[x_1, ..., x_n]$ partial derivatives $\frac{\partial f}{\partial x_i}$ are defined analogously. The gradient

$$(\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_n})$$

of f is identically zero in char K = p iff $f \in K[x_1^p, \ldots, x_n^p]$.

(ロ)、

Differential and tangent space

Definition. Let $f \in K[x_1, ..., x_n]$. We define the **differential of** f at a point $p = (a_1, ..., a_n) \in \mathbb{A}^n$ as

$$d_p f = \sum_{i=0}^n \frac{\partial f}{\partial x_i}(p)(x_i - a_i).$$

In other words $d_p f$ is the linear part in the Taylor expansion

$$f = f(p) + d_p f + \text{ terms of degree} \ge 2 \text{ in the } x - a_i$$

of *f* .

For a hypersurface $H \subset \mathbb{A}^n$ with I(A) = (f) we define the **tangent space** of H at a point $p \in H$ as the linear subspace

$$T_pH=V(d_pf).$$

The tangent space of an algebraic set

Definition. Let $A \subset \mathbb{A}^n$. The tangent space of A at a point $p \in A$ is defined by

$$T_p(A) = V(\{d_p f \mid f \in \mathsf{I}(A)\}).$$

The local dimension of A at p is defined as

 $\dim_p A = \{\dim C \mid \text{ is an irreducible component of } A \text{ passing through } p\}$ A is **smooth** at p if dim $T_p A = \dim_p A$.

Proposition. Let $A \subset \mathbb{A}^n$ be an algebraic set and let $f_1, \ldots, f_r \in I(A)$ polynomials vanishing on A. Then

$$n - \operatorname{rank}(rac{\partial f_i}{\partial x_j}(p)) \geq \dim_p A$$

and A is smooth at p if equality holds.

If $i_1 < \ldots < i_k$, $j_1 < \ldots < j_k$ correspond to the indices of a maximal size non-vanishing minor of the jacobian matrix $\left(\frac{\partial f_i}{\partial x_j}(p)\right)$ then in case of $K = \mathbb{R}$ or \mathbb{C} the implicit function theorem says that one can solve the system of equations $f_{i_1} = \ldots = f_{i_k} = 0$ locally:

Jacobian criterium

One can express x_{j_1}, \ldots, x_{j_k} as differentiable or holomorphic functions of the $x'_j s$ with $j \notin \{j_1, \ldots, j_k\}$ respectively and every solution of $f_{i_1} = \ldots = f_{i_k} = 0$ near p arises as a point on the corresponding graph.

Proof. We have

$$n - \operatorname{rank}(\frac{\partial f_i}{\partial x_j}(p)) \ge \dim T_p A \ge \dim_p A$$

The first inequality is true by the definition of T_pA . It could be strict since we did not assumed that f_1, \ldots, f_r generate I(A). The second inequality holds in a much more general setting, which we briefly discuss below.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Krull dimension and height

Definition. Let R be a commutative ring. A chain of prime ideals in R of length c is a chain with strict inclusions

 $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_c.$

The Krull dimension of R is

dim $R = \sup\{c \mid \exists \text{ chain of prime ideals in } R \text{ of length } c\}$

The **height** of a prime ideal $q \subset R$ is

height(\mathfrak{q}) = sup{ $c \mid \exists$ chain of prime of length c with $\mathfrak{p}_c = \mathfrak{q}$ }.

The **height** of an arbitrary ideal $I \subset R$ is

 $\operatorname{height}(I) = \min\{\operatorname{height}(\mathfrak{q}) \mid \mathfrak{q} \text{ is a prime ideal with } I \subset \mathfrak{q}\}.$

Remark. Notice for prime ideals $\mathfrak{p} \subset R$:

$$\dim R \geq \dim R/\mathfrak{p} + \operatorname{height}(\mathfrak{p})$$

and

$$\mathsf{height}(\mathfrak{p}) = \mathsf{dim} R_{\mathfrak{p}}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Krull dimension of $K[x_1, \ldots, x_n]$

Proposition. dim $K[x_1, \ldots, x_n] = n$.

Proof. $(0) \subsetneq (x_1) \subsetneq \ldots \subsetneq (x_1, \ldots, x_k) \subsetneq \ldots \subsetneq (x_1, \ldots, x_n)$ is a chain of prime ideals of length *n*. Thus dim $K[x_1, \ldots, x_n] \ge n$. To see equality we note that we obtained

 $\mathfrak{p} \subset \mathfrak{q} \text{ and } \dim V(\mathfrak{p}) = \dim V(\mathfrak{q}) \implies \mathfrak{p} = \mathfrak{q}$

from the lying over theorem. Thus any chain prime ideals can have length at most $n = \dim \mathbb{A}^n$.

Corollary. dim $K[A] = \dim A$ holds for algebraic subsets $A \subset \mathbb{A}^n$.

More efforts are needed to prove that any maximal chain of prime ideals in $K[x_1, \ldots, x_n]$, i.e., a chain which cannot be made longer by inserting a prime ideal, has length precisely *n*. The key is the so called refined version of the Noether normalisation. As a corollary we obtain for varieties

Theorem. Every maximal chain of prime ideals in the coordinate ring of affine variety K[C] has length dim C.

Dimension of the local ring

Corollary. Let $A \subset \mathbb{A}^n$ be an algebraic set. Then

 $\dim A_p = \dim \mathcal{O}_{A,p}.$

Proof. Prime ideals in $\mathcal{O}_{A,p}$ correspond to prime ideals on K[A] contained in the maximal ideal \mathfrak{m}_A corresponding to p. Hence a maximal chain in $\mathcal{O}_{A,p}$ correspond to a chain

$$\mathfrak{p}_0 \subsetneq \ldots \subsetneq \mathfrak{p}_c$$

in $K[x_1, ..., x_n]$ with $I(A) \subset \mathfrak{p}_0$ a minimal prime of I(A) and $\mathfrak{p}_c = \mathfrak{m} = I(p)$. So $C = V(\mathfrak{p}_0)$ is an irreducible component of A passing through p and the chain above corresponds to the chain

$$(0) \subsetneq \mathfrak{p}_1/\mathfrak{p}_0 \subsetneq \ldots \subsetneq \mathfrak{m}/\mathfrak{p}_0$$

in K[C] which has length dim $K[C] = \dim C$ by the theorem.

Krull's principal ideal theorem

Theorem. Let *R* be a noetherian ring. Every minimal prime \mathfrak{p} of a principal ideal (f) $\subset R$ has height

 $\mathsf{height}(\mathfrak{p}) \leq 1.$

Equality holds if f is a non-zero divisor. More generally, if \mathfrak{p} is a minimal prime of an ideal $(f_1, \ldots, f_c) \subset R$ generated by c elements, then

 $\operatorname{height}(\mathfrak{p}) \leq c.$

Corollary. Let (R, \mathfrak{m}, k) be a noetherian local ring. Then $\dim_k \mathfrak{m}/\mathfrak{m}^2 \ge \dim R.$

Proof. By Nakayama's Lemma \mathfrak{m} is generated by $c = \dim_k \mathfrak{m}/\mathfrak{m}^2$ elements. Since \mathfrak{m} is the unique maximal ideal of R we obtain

$$\dim R = \operatorname{height}(\mathfrak{m}) \leq c$$

from the principal ideal theorem.

Regular local rings

Definition. A regular local ring is noetherian local ring (R, \mathfrak{m}, k) with dim_k $\mathfrak{m}/\mathfrak{m}^2 = \dim R$.

Proposition. A point $p \in A$ of an algebraic set $A \subset \mathbb{A}^n$ is a smooth point of A iff $\mathcal{O}_{A,p}$ is a regular local ring.

Proof. Since $n - \mathfrak{m}_{A,p}/\mathfrak{m}_{A,p}^2$ is the codimension of $T_p(A)$ we have dim $T_pA = \dim A_p$ iff $\mathcal{O}_{A,p}$ is a regular local ring.

The *K*-vector space $\mathfrak{m}_{A,p}/m_{a,p}^2$ can be interpreted as the vector space of linear functions on $T_p(A)$ regarded as a *K*-vector space with origin *p*. Thus the dual vector space $(\mathfrak{m}_{A,p}/\mathfrak{m}_A^2)^* \cong T_p(A)$ is called the **Zariski tangent space** of *A* at *p*. Points $p \in A$ where *A* is not smooth are called **singular points of** *A*.

Example. Let $H \subset \mathbb{A}^n$ be a hypersurface and (f) = I(A) be its ideal in $K[x_1, \ldots, x_n]$. Then the set of singular points is

$$H_{sing} = V(f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}).$$

Singular points

Notice that $(f) = (f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ holds iff $\frac{\partial f}{\partial x_1} = 0, \dots, \frac{\partial f}{\partial x_n} = 0$ since the partial derivative $\frac{\partial f}{\partial x_i}$ has smaller degree in x_i than f. Thus $(f) = (f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ implies that char K = p and $f \in K[x_1^p, \dots, x_n^p]$. For K algebraically closed this gives $f = g^p$ contradicting that f is square free. Thus we have

Proposition. The set of smooth points of a reduced hypersurface $H \subset \mathbb{A}^n$ is a Zariski open dense subset of H.

Theorem. Let $A \subset \mathbb{A}^n$ be a affine variety. Then the set smooth points of A is a Zariski open dense subset of A.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Singular points

Proof. One can show that every variety is birational to a hypersurface *H*. In case of char K = 0 this follows from the existence of a primitive elements for the field extensions $K(x_{n-d+1}, \ldots, x_n) \subset K(A)$ where $A \to \mathbb{A}^d$ is a suitable linear projection. In positive characteristic the construction of the birational morphism is more complicated. For points *p* in the open set $U \subset A$, which is isomorphic an open

set of H we have

$$\mathcal{O}_{A,p} \cong \mathcal{O}_{H,p}$$

and the result follows from the proposition.

In case of projective varieties $X \subset \mathbb{P}^n$ one defines singular points the same way. The **embedded tangent space** $T_p(X)$ is defined as the projective closure of $T_p(X \cap U_i) \subset U_i \cong \mathbb{A}^n$ in \mathbb{P}^n . Notice that $T_p(X) \cong \mathbb{P}^d$ is a linear subspace of dimension $d = \dim X$ at smooth points p of X.

The dual projective space

Definition. Let \mathbb{P}^n be a projective space. Then the projective space of hyperplanes $H \subset \mathbb{P}^n$ is a called the **dual projective space**

 $\check{\mathbb{P}}^n = \{ H \subset \mathbb{P}^n \mid H \text{ is a hyperplane} \}.$

Remark. For a point $p \in \mathbb{P}^n$ the space of hyperplanes passing through p

$$H_p = \{H \in \check{\mathbb{P}} \mid p \in H\} \subset \check{\mathbb{P}}^n$$

is a hyperplane in $\check{\mathbb{P}}^n$ and any hyperplane in $\check{\mathbb{P}}^n$ arizes this way: The subvariety

$$\mathbb{F} = V(a_0x_0 + \ldots + a_nx_n) \subset \mathbb{P}^n \times \check{\mathbb{P}}^n$$

can be interpreted in two way

$$\mathbb{F} = \{ (p, H) \in \mathbb{P}^n \times \check{\mathbb{P}}^n \mid p \in H \} = \{ (p, H) \in \mathbb{P}^n \times \check{\mathbb{P}}^n \mid H \in H_p \}$$

The fibers of the projection $\mathbb{F} \to \check{\mathbb{P}}^n$ onto the second factor are hyperplanes in \mathbb{P}^n and the fibers of the projection to the first factor $\mathbb{F} \to \mathbb{P}^n$ are hyperplanes in $\check{\mathbb{P}}^n$.

Bertini's theorem

Theorem. Let $X \subset \mathbb{P}^n$ be a projective variety of dimension d. Let X_{sing} denote its set of singular points. There exists an non-empty open subset $U \subset \check{\mathbb{P}}^n$ of hyperplanes such that $X \cap H$ is smooth outside $X_{sing} \cap H$ for every $H \in U$. In particular if X is smooth then $X \cap H$ is smooth as well for all $H \in U$.

Proof. Consider the open set $X^* = X \setminus X_{sing}$ of smooth point of X and the variety

$$D^* = \{ (p, H) \in X^* \times \check{\mathbb{P}}^n \mid T_p X \subset H \} \longrightarrow \check{\mathbb{P}}^n$$
$$\downarrow \\ X^*$$

with its two projections. A point $(p, H) \in D^*$ is pair such that $X \cap H$ is singular in p.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof of Bertini's theorem

The fiber of $\pi_1: D^* \to X^*$ over a point $p \in X^*$ is a projective space of dimension n - d - 1

$$\{H \subset \mathbb{P}^n \mid H \supset T_p(X)\} \cong \mathbb{P}^{n-d-1}$$

because H is contained in the fiber iff H is defined by a linear combination of the n - d equations of $T_p X \cong \mathbb{P}^d \subset \mathbb{P}^n$. Thus dim $D^* = d + n - d - 1 = n - 1$. We take

$$D=\overline{D^*}\subset X\times\check{\mathbb{P}}^n\subset\mathbb{P}^n\times\check{\mathbb{P}}^n.$$

Then dim $D = \dim D^*$ and the projection $\pi_2(D) \subset \mathbb{P}^n$ is a Zariski closed subset of dimension

$$\dim \pi_2(D) \leq \dim D = n-1$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

and $U = \check{\mathbb{P}}^n \setminus \pi_2(D)$ is the desired open subset.

Geometric interpretation of the degree

Theorem. Let $X \subset \mathbb{P}^n$ be a projective variety of dimension d. Then a general linear subspace \mathbb{P}^{n-d} intersects X in deg X many distinct points transversally.

Proof. Let $H \subset \mathbb{P}^n$ be a general hyperplane. In particular H does not contain any component of X_{sing} . Let $C_1 \cup \ldots \cup C_r = X \cap H$ be the irreducible components. Then

$$\deg X = \sum_{j=1}^r i(X, H; C_j) \deg C_j$$

holds by Bézout's theorem. By Bertini's theorem the intersection is smooth. In particular the intersection is transversal at smooth points of each C_j and the intersection multiplicity is 1. The result follows now by induction. A general complimentary \mathbb{P}^{n-d} is the intersection of d general hyperplanes $H_1 \cap \ldots \cap H_d$ such that H_i intersects each component of $X \cap H_1 \cap \ldots \cap H_{i-1}$ transversally.

The dual variety

Remark. Actually the intersection $X \cap H$ is irreducible and $X \cap \mathbb{P}^{n-d+1}$ is an irreducible smooth curve.

Definition. $\check{X} = \pi_2(D)$ is called the **dual variety** of *X*.

For $C \subset \mathbb{P}^2$ an irreducible curve which is not a line, the dual variety is again a curve $\check{C} \subset \check{\mathbb{P}}^2$.

Theorem. Let $C \subset \mathbb{P}^2$ be irreducible curve over a field of characteristic 0. Then the double dual curve

$$\check{C} = C$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

gives the original curve back.

Theorem of Brianchon

Theorem. The three diagonals of a hexagon which is circumscribed around a conic intersect in a point

This theorem follows via duality from Pascal's theorem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Plücker's research

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの