Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

Overview

1. Discrete valuation rings
2. Dynamical intersection numbers
3. A bounds on the number of singular points of plane curves
4. Rational curves
5. The geometric genus

Discrete valuation

Definition. Let L be a field. A discrete valuation on L is a surjective map

$$
v: L \backslash\{0\} \rightarrow \mathbb{Z}
$$

such that for all $a, b \in L \backslash\{0\}$

$$
\begin{aligned}
& \text { 1. } v(a b)=v(a)+v(b) \\
& \text { 2. } v(a+b) \geq \min \{v(a), v(b)\}
\end{aligned}
$$

Note that the first condition says that $(L \backslash\{0\}, \cdot) \rightarrow(\mathbb{Z},+)$ is a group homomorphism. In particular $v(1)=0$. By convention $v(0)=\infty$. The set

$$
R=\{a \in L \mid v(a) \geq 0\}
$$

is a subring of L, which is called the valuation ring of v. The subset of non-units in R

$$
\mathfrak{m}=\{a \in L \mid v(a)>0\}
$$

is an ideal. Hence (R, \mathfrak{m}) is a local ring.

Discrete valuation rings

Definition. A discrete valuation ring (DVR) R is an integral domain such that R is the valuation ring of a valuation v on its quotient field $L=Q(R)$.
Example. The formal power series ring $R=K[[t]]$ in one variable over a field K is a DVR. Indeed, the quotient field of R is

$$
L=K((t))=\left\{\sum_{n=N}^{\infty} a_{n} t^{n} \mid N \in \mathbb{Z}\right\}
$$

the ring of formal Laurent series, and

$$
v\left(\sum a_{n} t^{n}\right)=\min \left\{n \mid a_{n} \neq 0\right\}
$$

for a non-zero Laurent series defines a valuation on L with valuation ring $K[[t]]$. Following the notion for power series in one complex variable, we say that $f \in K[[t]]$ has a zero of order n if $v(f)=n$ and $f \in K((t))$ with $n=v(f)<0$ is said to have pole of order $-n$.

Characterization of DVR's

Proposition. Let R be a ring. TFAE:

1) R is a $D V R$.
2) R is a noetherian regular local ring of Krull dimension 1 .

Proof. 1$) \Rightarrow 2$): Suppose R is a DVR. Let $t \in R$ be an element with $v(t)=1$. Then any element $f \in R$ with $v(f)=n$ is of the form $f=u t^{n}$ with u a unit in R. In particular, t is a generator of \mathfrak{m} and the only proper ideals $I \neq 0$ are of the form $I=\left(t^{n}\right)=\mathfrak{m}^{n}$ with $n=\min \{v(f) \mid f \in I\}$. Hence $(0) \subsetneq \mathfrak{m}$ is the only chain of prime ideals in R and R is PID. So R is noetherian and a regular local ring of Krull dimension 1, because \mathfrak{m} is generated by a single element, i.e., $\mathfrak{m} / \mathfrak{m}^{2}$ is 1 -dimensional by Nakayama's Lemma.
$2 \Rightarrow 1$
Conversely, let R be a noetherian regular local ring of Krull dimension 1. By Nakayama's Lemma the maximal ideal \mathfrak{m} is a principal ideal, say $\mathfrak{m}=(t)$. Hence the powers $\mathfrak{m}^{k}=\left(t^{k}\right)$ are principal ideals as well. Let $f \in R$ be a non-zero element. Since $\bigcap_{k=1}^{\infty} \mathfrak{m}^{k}=(0)$ by Krull's intersection theorem

$$
n=\max \left\{k \mid f \in \mathfrak{m}^{k}\right\}
$$

is the maximum of finitely many integers and $f=u t^{n}$ for a unit $u \in R$. We set $v(f)=n$. Then $v\left(f_{1} f_{2}\right)=v\left(f_{1}\right)+v\left(f_{2}\right)$. In particular R is a domain. We extend v to a map

$$
v: Q(R) \backslash\{0\} \rightarrow \mathbb{Z} \quad \text { by } \quad v\left(\frac{f_{1}}{f_{2}}\right)=v\left(f_{1}\right)-v\left(f_{2}\right)
$$

Then v is discrete valuation on $Q(R)$ and R is its valuation ring.

Smooth points of curves

Corollary. Let $p \in C$ be a smooth point of an irreducible curve. Then $\mathcal{O}_{C, p}$ is a DVR.
Remark. We denote the valuation of $K(C)$ corresponding to $\mathcal{O}_{C, p}$ with v_{p}. In case of a smooth projective curve C one can show that

$$
p \mapsto v_{p}
$$

induces a bijection between the points of C and the valuations of the function field $v: K(C) \backslash\{0\} \rightarrow \mathbb{Z}$ with $v(a)=0$ for all $a \in K \backslash\{0\}$.
Proposition. Let C be a smooth quasi projective curve and $\varphi^{\prime}: C \rightarrow \mathbb{P}^{n}$ a rational map. Then φ^{\prime} extends to a morphism

$$
\varphi: C \rightarrow \mathbb{P}^{n}
$$

Proof

Suppose that φ^{\prime} is given by a tuple f_{0}, \ldots, f_{n} of rational functions. There are two reasons why $\left[f_{0}(p): \ldots: f_{n}(p)\right]$ might be not defined in $p \in C$. One of the rational functions might have a pole at p or all rational functions might vanish at p.
Taking $k=\min \left\{v_{p}\left(f_{j}\right) \mid j=0, \ldots, n\right\}$ and $t \in \mathfrak{m}_{C, p} \subset \mathcal{O}_{C, p}$ a generator we see that $\left[t^{-k} f_{0}: \ldots: t^{-k} f_{n}\right]$ is defined at $p \in C$ and coincides φ^{\prime} where t has no zeroes or poles.
Remark. The proposition is not true for a higher dimension source: The morphism

$$
\mathbb{A}^{2} \backslash\{o\} \rightarrow \mathbb{P}^{1}, p \mapsto[x(p): y(p)]
$$

has no extension to \mathbb{A}^{2}. Instead the closure of the graph is the blow-up of $o \in \mathbb{A}^{2}$.

Projectivity of the Hilbert schemes

Remark. The proposition above explains why the fact that the Hilbert scheme $\operatorname{Hilb}_{p(t)}\left(\mathbb{P}^{n}\right)$ is projective is so nice. Let $o \in C$ be a smooth point on a quasi-projective curve. Then every family $X^{\prime} \subset C \backslash\{o\} \times \mathbb{P}^{n}$ of subschemes X_{q}^{\prime} with Hilbert polynomial $p(t)$ can be extended to a family

$$
X \subset C \times \mathbb{P}^{n}
$$

where the fibers X_{o} has Hilbert polynomial $p(t)$ as well. Indeed the family X^{\prime} corresponds to a rational map $C \rightarrow \operatorname{Hilb}_{p(t)}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{N}$ which extends to a morphism. Loosely speaking

$$
\lim _{q \rightarrow o} X_{q}=X_{o} \in \operatorname{Hilb}_{p(t)}\left(\mathbb{P}^{n}\right)
$$

exists along curves.

Degree of a morphism $f: C \rightarrow \mathbb{P}^{1}$

Let $C \subset \mathbb{P}^{n}$ be a smooth projective curve $f \in K(C)$ a non-constant rational function. By the proposition above the rational map

$$
C \rightarrow \mathbb{P}^{1}, p \mapsto[1: f(p)]
$$

extends to a morphism $f: C \rightarrow \mathbb{P}^{1}$, which we denote by the same letter.
Definition. The degree of f is

$$
\operatorname{deg} f=\sum_{p \in C: v_{p}(f)>0} v_{p}(f)
$$

the number of preimage points of $[1: 0]$ counted with multiplicities.
Proposition. Counted with multiplicities each fiber $f^{-1}(\lambda)$ of $\lambda \in \mathbb{P}^{1}$ has precisely $\operatorname{deg} f$ many points.

Proof

Since rational function are given by quotients of homogeneous polynomials of the same degree on the ambient \mathbb{P}^{n} the number of poles $\sum_{p \in C: v_{p}(f)<0}-v_{p}(f)$ coincides with the number zeroes by Bézout's theorem. To see that the number of preimage points of $\lambda \in \mathbb{A}^{1}=K$ coincides with $\operatorname{deg} f$, we note that f and $f-\lambda$ have the same poles.
Remark. One can show that $\operatorname{deg} f$ also coincides with the degree of the field extension $[K(C): K(f)]$. Note that $K(f) \cong K\left(\mathbb{P}^{1}\right)$. More generally for a morphism $\varphi: C \rightarrow E$ between smooth projective curves the degree can be defined as

$$
\operatorname{deg} \varphi=[K(C): K(E)]
$$

and this number coincides with the number of preimage points of any point $p \in E$ counted with multiplicities.

Dynamical intersection numbers

We assume that $K=\mathbb{C}$. Let $f \in K[x, y, z]$ a square free polynomial of degree d and $g \in K[x, y, z]$ a homogeneous polynomial of degree e which as no common factor with f. Then

$$
d \cdot e=\sum_{p \in V(f, g)} i(f, g ; p)
$$

by Bézout's theorem. We will show that the intersection multiplicities can be interpreted dynamically.
As an application of Bertini's theorem we see that there exists a homogeneous polynomial g_{1} of degree e such that $C=V(f)$ and $D=V\left(g_{1}\right)$ intersect transversally in $d \cdot e$ distinct points.
Indeed, consider the e-uple embedding

$$
\rho_{2, e}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{\binom{e+2}{2}-1}
$$

Curves of degree e in \mathbb{P}^{2} correspond to hyperplanes H in $\mathbb{P}^{\binom{e+2}{2}-1}$ and a general hyperplane H_{1} intersects every component of $\rho_{2, e}(C)$ transversally in smooth points of $\rho_{2, e}(C)$.

Dynamical intersection numbers, 2

Let g_{1} be the polynomial corresponding to the equation of H_{1} and consider the pencil of curves of degree e

$$
D=V\left(t_{0} g+t_{1} g_{1}\right) \in \mathbb{P}^{1} \times \mathbb{P}^{2}
$$

All but finitely many fibers D_{λ} over $\lambda \in \mathbb{P}^{1}$ intersect C in $d \cdot e$ distinct points. Consider now the curve

$$
X^{\prime}=D \cap\left(\mathbb{P}^{1} \times C\right)
$$

and the union X of components which dominate \mathbb{P}^{1}. Let $\sigma: Y \rightarrow X$ be a birational morphism from a smooth projective curve and let Y_{0} the preimage of $[1: 0] \in \mathbb{P}^{1}$ under $f=\pi_{1} \circ \sigma$ where π_{1} denotes the projection onto the first factor of $\mathbb{P}^{1} \times \mathbb{P}^{2}$. Each point of Y_{0} maps to a point of $V(f, g)$ under π_{2}.

Dynamical intersection numbers, 3

Let $q \in Y_{0}$ be a point and $s \in \mathfrak{m}_{Y, q} \subset \mathcal{O}_{Y, q}$ a local generator. The rational function $t=t_{1} / t_{0} \in \mathcal{O}_{\mathbb{P}^{1},[1: 0]}$ pullsback to $f=u s^{r}$ with $r=v_{q}(f)$ and $u \in \mathcal{O}_{Y, q}$ a unit. For point λ with $|\lambda|$ small there are the precisely r preimage points in the holomorphic chart defined by s with absolute value approximately $\left(\frac{|\lambda|}{|u(0)|}\right)^{1 / r}$. For $\lambda \rightarrow 0$ the images of these points in C approach the image of $p \in C \cap D_{0}$ of q.
Let p_{1}, \ldots, p_{k} denote the distinct points of $C \cap V(g)$. Let $q_{i j}$ for $j=1, \ldots d_{i}$ denote the distinct preimages of p_{i} in Y and $r_{i j}$ denote the ramification numbers as above. Then precisely $\sum_{j=1}^{d_{i}} r_{i j}$ images of the points in the fiber $f^{-1}(\lambda)$ approach p_{i} for $\lambda \rightarrow 0$.

Dynamical intersection numbers, 4

Thus we must have

$$
i\left(f, g ; p_{i}\right)=\sum_{j=1}^{d_{i}} r_{i j} .
$$

This identity fits with the fact that $\sum_{i=1}^{k} \sum_{j=1}^{d_{i}} r_{i j}=d \cdot e$ counts the number of points in the fibers of $Y \rightarrow \mathbb{P}^{1}$.
To prove this identity one can use that $i\left(f, g ; p_{i}\right)$ can also be computed as the multiplicity of the resultant $\operatorname{Res}_{x}(f, g) \in K[y, z]$ at the point $\left[b_{i}: c_{i}\right]$ for $p_{i}=\left[a_{i}: b_{i}: c_{i}\right]$, if our coordinate system is chosen general enough. For example the $\left[b_{i}: c_{i}\right]$'s should be pairwise distinct. The resultant $\operatorname{Res}_{x}\left(f, g_{\lambda}\right)$ has precisely $\sum_{j=1}^{d_{i}} r_{i j}$ zeroes counted with multiplicities which approach $\left[b_{i}: c_{i}\right]$ for $\lambda \rightarrow 0$.

A bound on the number of singular points

Theorem. 1) Let $C \subset \mathbb{P}^{2}$ be a plane curve of degree d. Let $r_{p}=\operatorname{mult}(C ; p)$ denote the multiplicity of C at p. Then

$$
\sum_{p \in C}\binom{r_{p}}{2} \leq\binom{ d}{2}
$$

2) If C is irreducible then

$$
\sum_{p \in C}\binom{r_{p}}{2} \leq\binom{ d-1}{2}
$$

Remark. Both bounds are sharp: A general union of d lines has $\binom{d}{2}$ double points. The image of \mathbb{P}^{1} under a general morphism defined by forms of degree d has $\binom{d-1}{2}$ double points.

Proof of the bounds

Let $\mathrm{I}(C)=(f)$. Then f is square free and
$C_{\text {sing }}=V\left(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$ is a finite set. In general coordinates f and $\frac{\partial f}{\partial x}$ have no common factor. If $p \in C$ is a point of multiplicity r_{p} then $\frac{\partial f}{\partial x}$ has multiplicty $\geq r_{p}-1$ at p. Thus by Bézout and the bound on intersection multiplicities we have

$$
\sum_{p \in C} r_{p}\left(r_{p}-1\right) \leq d(d-1) .
$$

For the second case we may assume $d \geq 2$. Let p_{1}, \ldots, p_{s} denote the singular points of C, and let r_{1}, \ldots, r_{s} denote their multiplicity. The vector space

$$
L\left(d-1 ;\left(r_{1}-1\right) p_{1}, \ldots,\left(r_{s}-1\right) p_{s}\right)
$$

has dimension $\geq\binom{ d+1}{2}-\sum_{i=1}^{s}\binom{r_{i}}{2}$ which is at least d by the first bound.

Proof of the bounds continued

In particular $t=\binom{d+1}{2}-\sum_{i=1}^{s}\binom{r_{i}}{2}-1 \geq 1$. Choose t further points q_{1}, \ldots, q_{t} on C. Then

$$
L\left(d-1 ;\left(r_{1}-1\right) p_{1}, \ldots,\left(r_{s}-1\right) p_{s}, q_{1}, \ldots, q_{t}\right)
$$

contains a non-zero element $g . f$ and g have no common factor, because f is irreducible and $\operatorname{deg} g<d$. So they intersect only in finitely many points and Bézout gives

$$
d(d-1) \geq \sum_{i=1}^{s} r_{i}\left(r_{i}-1\right)+t
$$

Since $t=\binom{d+1}{2}-\sum_{i=1}^{s}\binom{r_{i}}{2}-1 \geq 1$ this inequality is equivalent to the assertion:

$$
d(d-1)-\frac{(d+1) d}{2}+1=\frac{1}{2}\left(d^{2}-3 d+2\right)
$$

Rational curves

Theorem. Let $C \subset \mathbb{P}^{2}$ be a irreducible plane curve of degree d with points of multiplicity r_{p}. If

$$
\sum_{p \in C}\binom{r_{p}}{2}=\binom{d-1}{2}
$$

then there exists a birational map $\mathbb{P}^{1} \rightarrow C$.
Proof. With notation of the proof above we consider now only $t-1$ additional q_{1}, \ldots, q_{t-1}. Then

$$
\mathbb{P}\left(L\left(d-1 ;\left(r_{1}-1\right) p_{1}, \ldots,\left(r_{s}-1\right) p_{s}, q_{1}, \ldots, q_{t-1}\right) \cong \mathbb{P}^{1}\right.
$$

is pencil. The dimension cannot be larger, because otherwise we could find a curve in the which passes through 2 further point, too many for Bézout. So for every point $q \in C \backslash\left\{p_{1}, \ldots, p_{s}, q_{1}, \ldots, q_{t-1}\right\}$ there is a unique curve D in the pencil which passes through q. This defines a birational map $C \longrightarrow \mathbb{P}^{1}$ whose inverse extends to a birational morphism $\mathbb{P}^{1} \rightarrow C$.

Rational curves

Remark. The equality above is sufficient but not necessary for rationality.
Example. The curve $V\left(z^{2} y^{3}-x^{5}\right)$ is rational but has only two singular point of multiplicity 2 and 3 . So

$$
\binom{4}{2}>\binom{2}{2}+\binom{3}{2}
$$

Note that in the blow-up of the affine curve $z^{2}-x^{5}$ we get another double point $u^{2}-x^{3}$ in the chart $(x, z)=(x, u x)$. Over the triple point $y^{3}-x^{5}$ we find a further double point $w^{3}-x^{2}$ under the transformation $(x, y)=(x, w x)$
Taking these singular points into account we get equality

$$
6=1+3+1+1 .
$$

Infinitesimal near points

Let $X_{2} \rightarrow X_{1} \rightarrow \mathbb{P}^{2}$ be the blow-up of a point p followed by a blow-up of a point q on the exceptional $E_{1} \subset X_{1}$. Then we call a points $p_{1} \in E_{1}$ an infinitesimal near points to p of first order and the points $p_{2} \in E_{2}$ in the exceptional curve of $X_{2} \rightarrow X_{1}$ infinitesimal near points of p of second order.
So we have an infinite tree of infinitesimal near points to every point $p \in \mathbb{P}^{2}$.
Theorem. Let $C \subset \mathbb{P}^{2}$ be an irreducible curves of degree d. Then

$$
\binom{d-1}{2} \geq \sum_{p}\binom{r_{p}}{2}
$$

where the sum runs over all points of \mathbb{P}^{2} including infinitesimal near points, and r_{p} denotes the multiplicity of the strict transfom at p. Equality holds if and only if C is birational to \mathbb{P}^{1}.

The genus and its toplogical interpretation

Definition. The difference $g=\binom{d-1}{2}-\sum_{p}\binom{r_{p}}{2}$ as above is called the geometric genus of the plane curve C.
If C is a smooth projective curve then the genus g of C is defined as the genus of a birational plane model of C.

A smooth projective curve C over the complex numbers \mathbb{C} is also a Riemann surface. As differential manifold this a compact orientable surface S. Their differentiable classification depend only on the integer g. It is a handle body with g handles.

The number g can also be recovered from any triangulation of S. If we have a triangulation with c_{0} vertices c_{1} edges and c_{2} faces of S then the topological Euler characteristic is

$$
\chi(S)=c_{0}-c_{1}+c_{2}=2-2 g .
$$

The Hilbert polynomial of a smooth projective curve

The genus g of a smooth projective curve can also be computed from the Hilbert polynomial.

Theorem. The Hilbert polynomial of a smooth projective curve $C \subset \mathbb{P}^{n}$ of degree d has the form

$$
p(t)=d t+1-g .
$$

Corollary. The constant term of the Hilbert polynomial $p(t)$ of a smooth projective curve C does not depend on the embedding $C \hookrightarrow \mathbb{P}^{n}$.

