Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

- 1. Discrete valuation rings
- 2. Dynamical intersection numbers
- 3. A bounds on the number of singular points of plane curves

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 4. Rational curves
- 5. The geometric genus

Discrete valuation

Definition. Let L be a field. A **discrete valuation** on L is a surjective map

$$v: L \setminus \{0\} \to \mathbb{Z}$$

such that for all $a, b \in L \setminus \{0\}$

1.
$$v(ab) = v(a) + v(b)$$
,

2. $v(a+b) \ge \min\{v(a), v(b)\}.$

Note that the first condition says that $(L \setminus \{0\}, \cdot) \to (\mathbb{Z}, +)$ is a group homomorphism. In particular v(1) = 0. By convention $v(0) = \infty$. The set

$$R = \{a \in L \mid v(a) \ge 0\}$$

is a subring of L, which is called the **valuation ring** of v. The subset of non-units in R

$$\mathfrak{m} = \{a \in L \mid v(a) > 0\}$$

is an ideal. Hence (R, \mathfrak{m}) is a local ring.

Discrete valuation rings

Definition. A discrete valuation ring (DVR) R is an integral domain such that R is the valuation ring of a valuation v on its quotient field L = Q(R).

Example. The formal power series ring R = K[[t]] in one variable over a field K is a DVR. Indeed, the quotient field of R is

$$L = K((t)) = \{\sum_{n=N}^{\infty} a_n t^n \mid N \in \mathbb{Z}\}$$

the ring of formal Laurent series, and

$$v(\sum a_n t^n) = \min\{n \mid a_n \neq 0\}$$

for a non-zero Laurent series defines a valuation on L with valuation ring K[[t]]. Following the notion for power series in one complex variable, we say that $f \in K[[t]]$ has a **zero of order** n if v(f) = n and $f \in K((t))$ with n = v(f) < 0 is said to have **pole of order** -n.

Characterization of DVR's

Proposition. Let R be a ring. TFAE:

1) R is a DVR.

2) R is a noetherian regular local ring of Krull dimension 1.

Proof. 1) \Rightarrow 2): Suppose R is a DVR. Let $t \in R$ be an element with v(t) = 1. Then any element $f \in R$ with v(f) = n is of the form $f = ut^n$ with u a unit in R. In particular, t is a generator of \mathfrak{m} and the only proper ideals $I \neq 0$ are of the form $I = (t^n) = \mathfrak{m}^n$ with $n = \min\{v(f) \mid f \in I\}$. Hence (0) $\subsetneq \mathfrak{m}$ is the only chain of prime ideals in R and R is PID. So R is noetherian and a regular local ring of Krull dimension 1, because \mathfrak{m} is generated by a single element, i.e., $\mathfrak{m}/\mathfrak{m}^2$ is 1-dimensional by Nakayama's Lemma.

 $2 \Rightarrow 1$

Conversely, let R be a noetherian regular local ring of Krull dimension 1. By Nakayama's Lemma the maximal ideal \mathfrak{m} is a principal ideal, say $\mathfrak{m} = (t)$. Hence the powers $\mathfrak{m}^k = (t^k)$ are principal ideals as well. Let $f \in R$ be a non-zero element. Since $\bigcap_{k=1}^{\infty} \mathfrak{m}^k = (0)$ by Krull's intersection theorem

$$n = \max\{k \mid f \in \mathfrak{m}^k\}$$

is the maximum of finitely many integers and $f = ut^n$ for a unit $u \in R$. We set v(f) = n. Then $v(f_1f_2) = v(f_1) + v(f_2)$. In particular R is a domain. We extend v to a map

$$v: Q(R) \setminus \{0\} \to \mathbb{Z}$$
 by $v(\frac{f_1}{f_2}) = v(f_1) - v(f_2).$

Then v is discrete valuation on $Q({\boldsymbol R})$ and ${\boldsymbol R}$ is its valuation ring.

Smooth points of curves

Corollary. Let $p \in C$ be a smooth point of an irreducible curve. Then $\mathcal{O}_{C,p}$ is a DVR.

Remark. We denote the valuation of K(C) corresponding to $\mathcal{O}_{C,p}$ with v_p . In case of a smooth projective curve C one can show that

$$p \mapsto v_p$$

induces a bijection between the points of C and the valuations of the function field $v: K(C) \setminus \{0\} \to \mathbb{Z}$ with v(a) = 0 for all $a \in K \setminus \{0\}$.

Proposition. Let C be a smooth quasi projective curve and $\varphi': C \dashrightarrow \mathbb{P}^n$ a rational map. Then φ' extends to a morphism

$$\varphi: C \to \mathbb{P}^n.$$

Proof

Suppose that φ' is given by a tuple f_0, \ldots, f_n of rational functions. There are two reasons why $[f_0(p) : \ldots : f_n(p)]$ might be not defined in $p \in C$. One of the rational functions might have a pole at p or all rational functions might vanish at p. Taking $k = \min\{v_p(f_j) \mid j = 0, \ldots, n\}$ and $t \in \mathfrak{m}_{C,p} \subset \mathcal{O}_{C,p}$ a generator we see that $[t^{-k}f_0 : \ldots : t^{-k}f_n]$ is defined at $p \in C$ and coincides φ' where t has no zeroes or poles.

Remark. The proposition is not true for a higher dimension source: The morphism

$$\mathbb{A}^2 \setminus \{o\} \to \mathbb{P}^1, p \mapsto [x(p): y(p)]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

has no extension to \mathbb{A}^2 . Instead the closure of the graph is the blow-up of $o \in \mathbb{A}^2$.

Projectivity of the Hilbert schemes

Remark. The proposition above explains why the fact that the Hilbert scheme $\operatorname{Hilb}_{p(t)}(\mathbb{P}^n)$ is projective is so nice. Let $o \in C$ be a smooth point on a quasi-projective curve. Then every family $X' \subset C \setminus \{o\} \times \mathbb{P}^n$ of subschemes X'_q with Hilbert polynomial p(t) can be extended to a family

$$X \subset C \times \mathbb{P}^n$$

where the fibers X_o has Hilbert polynomial p(t) as well. Indeed the family X' corresponds to a rational map $C \dashrightarrow \operatorname{Hilb}_{p(t)}(\mathbb{P}^n) \subset \mathbb{P}^N$ which extends to a morphism. Loosely speaking

$$\lim_{q \to o} X_q = X_o \in \operatorname{Hilb}_{p(t)}(\mathbb{P}^n)$$

exists along curves.

Degree of a morphism $f: C \to \mathbb{P}^1$

Let $C\subset \mathbb{P}^n$ be a smooth projective curve $f\in K(C)$ a non-constant rational function. By the proposition above the rational map

$$C \dashrightarrow \mathbb{P}^1, p \mapsto [1:f(p)]$$

extends to a morphism $f: C \to \mathbb{P}^1$, which we denote by the same letter.

Definition. The **degree** of f is

$$\deg f = \sum_{p \in C: v_p(f) > 0} v_p(f)$$

the number of preimage points of $\left[1:0\right]$ counted with multiplicities.

Proposition. Counted with multiplicities each fiber $f^{-1}(\lambda)$ of $\lambda \in \mathbb{P}^1$ has precisely deg f many points.

Proof

Since rational function are given by quotients of homogeneous polynomials of the same degree on the ambient \mathbb{P}^n the number of poles $\sum_{p \in C: v_p(f) < 0} -v_p(f)$ coincides with the number zeroes by Bézout's theorem. To see that the number of preimage points of $\lambda \in \mathbb{A}^1 = K$ coincides with deg f, we note that f and $f - \lambda$ have the same poles.

Remark. One can show that deg f also coincides with the degree of the field extension [K(C) : K(f)]. Note that $K(f) \cong K(\mathbb{P}^1)$.

More generally for a morphism $\varphi:C\to E$ between smooth projective curves the **degree** can be defined as

$$\deg \varphi = [K(C):K(E)]$$

and this number coincides with the number of preimage points of any point $p \in E$ counted with multiplicities.

Dynamical intersection numbers

We assume that $K = \mathbb{C}$. Let $f \in K[x, y, z]$ a square free polynomial of degree d and $g \in K[x, y, z]$ a homogeneous polynomial of degree e which as no common factor with f. Then

$$d \cdot e = \sum_{p \in V(f,g)} i(f,g;p)$$

by Bézout's theorem. We will show that the intersection multiplicities can be interpreted dynamically.

As an application of Bertini's theorem we see that there exists a homogeneous polynomial g_1 of degree e such that C = V(f) and $D = V(g_1)$ intersect transversally in $d \cdot e$ distinct points. Indeed, consider the e-uple embedding

$$\rho_{2,e}: \mathbb{P}^2 \to \mathbb{P}^{\binom{e+2}{2}-1}$$

Curves of degree e in \mathbb{P}^2 correspond to hyperplanes H in $\mathbb{P}^{\binom{e+2}{2}-1}$ and a general hyperplane H_1 intersects every component of $\rho_{2,e}(C)$ transversally in smooth points of $\rho_{2,e}(C)$.

Dynamical intersection numbers, 2

Let g_1 be the polynomial corresponding to the equation of H_1 and consider the pencil of curves of degree e

$$D = V(t_0g + t_1g_1) \in \mathbb{P}^1 \times \mathbb{P}^2$$

All but finitely many fibers D_{λ} over $\lambda \in \mathbb{P}^1$ intersect C in $d \cdot e$ distinct points. Consider now the curve

$$X' = D \cap (\mathbb{P}^1 \times C)$$

and the union X of components which dominate \mathbb{P}^1 . Let $\sigma: Y \to X$ be a birational morphism from a smooth projective curve and let Y_0 the preimage of $[1:0] \in \mathbb{P}^1$ under $f = \pi_1 \circ \sigma$ where π_1 denotes the projection onto the first factor of $\mathbb{P}^1 \times \mathbb{P}^2$. Each point of Y_0 maps to a point of V(f,g) under π_2 .

Dynamical intersection numbers, 3

Let $q \in Y_0$ be a point and $s \in \mathfrak{m}_{Y,q} \subset \mathcal{O}_{Y,q}$ a local generator. The rational function $t = t_1/t_0 \in \mathcal{O}_{\mathbb{P}^1,[1:0]}$ pullsback to $f = us^r$ with $r = v_q(f)$ and $u \in \mathcal{O}_{Y,q}$ a unit. For point λ with $|\lambda|$ small there are the precisely r preimage points in the holomorphic chart defined by s with absolute value approximately $(\frac{|\lambda|}{|u(0)|})^{1/r}$. For $\lambda \to 0$ the images of these points in C approach the image of $p \in C \cap D_0$ of q.

Let p_1, \ldots, p_k denote the distinct points of $C \cap V(g)$. Let q_{ij} for $j = 1, \ldots, d_i$ denote the distinct preimages of p_i in Y and r_{ij} denote the ramification numbers as above. Then precisely $\sum_{j=1}^{d_i} r_{ij}$ images of the points in the fiber $f^{-1}(\lambda)$ approach p_i for $\lambda \to 0$.

Dynamical intersection numbers, 4

Thus we must have

$$i(f,g;p_i) = \sum_{j=1}^{d_i} r_{ij}.$$

This identity fits with the fact that $\sum_{i=1}^{k} \sum_{j=1}^{d_i} r_{ij} = d \cdot e$ counts the number of points in the fibers of $Y \to \mathbb{P}^1$. To prove this identity one can use that $i(f, g; p_i)$ can also be computed as the multiplicity of the resultant $\operatorname{Res}_x(f, g) \in K[y, z]$ at the point $[b_i:c_i]$ for $p_i = [a_i:b_i:c_i]$, if our coordinate system is chosen general enough. For example the $[b_i:c_i]$'s should be pairwise distinct. The resultant $\operatorname{Res}_x(f, g_\lambda)$ has precisely $\sum_{j=1}^{d_i} r_{ij}$ zeroes counted with multiplicities which approach $[b_i:c_i]$ for $\lambda \to 0$.

A bound on the number of singular points

Theorem. 1) Let $C \subset \mathbb{P}^2$ be a plane curve of degree d. Let $r_p = \text{mult}(C; p)$ denote the multiplicity of C at p. Then

$$\sum_{p \in C} \binom{r_p}{2} \le \binom{d}{2}$$

2) If C is irreducible then

$$\sum_{p \in C} \binom{r_p}{2} \le \binom{d-1}{2}.$$

Remark. Both bounds are sharp: A general union of d lines has $\binom{d}{2}$ double points. The image of \mathbb{P}^1 under a general morphism defined by forms of degree d has $\binom{d-1}{2}$ double points.

Proof of the bounds

Let I(C) = (f). Then f is square free and $C_{sing} = V(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$ is a finite set. In general coordinates fand $\frac{\partial f}{\partial x}$ have no common factor. If $p \in C$ is a point of multiplicity r_p then $\frac{\partial f}{\partial x}$ has multiplicity $\geq r_p - 1$ at p. Thus by Bézout and the bound on intersection multiplicities we have

$$\sum_{p \in C} r_p(r_p - 1) \le d(d - 1).$$

For the second case we may assume $d \ge 2$. Let p_1, \ldots, p_s denote the singular points of C, and let r_1, \ldots, r_s denote their multiplicity. The vector space

$$L(d-1; (r_1-1)p_1, \ldots, (r_s-1)p_s)$$

has dimension $\geq \binom{d+1}{2} - \sum_{i=1}^{s} \binom{r_i}{2}$ which is at least d by the first bound.

Proof of the bounds continued

In particular $t = \binom{d+1}{2} - \sum_{i=1}^{s} \binom{r_i}{2} - 1 \ge 1$. Choose t further points q_1, \ldots, q_t on C. Then

$$L(d-1; (r_1-1)p_1, \ldots, (r_s-1)p_s, q_1, \ldots, q_t)$$

contains a non-zero element g. f and g have no common factor, because f is irreducible and $\deg g < d$. So they intersect only in finitely many points and Bézout gives

$$d(d-1) \ge \sum_{i=1}^{s} r_i(r_i-1) + t.$$

Since $t = \binom{d+1}{2} - \sum_{i=1}^{s} \binom{r_i}{2} - 1 \ge 1$ this inequality is equivalent to the assertion:

$$d(d-1) - \frac{(d+1)d}{2} + 1 = \frac{1}{2}(d^2 - 3d + 2).$$

Rational curves

Theorem. Let $C \subset \mathbb{P}^2$ be a irreducible plane curve of degree d with points of multiplicity r_p . If

$$\sum_{p \in C} \binom{r_p}{2} = \binom{d-1}{2}$$

then there exists a birational map $\mathbb{P}^1 \to C$. **Proof.** With notation of the proof above we consider now only

$$t-1$$
 additional q_1, \ldots, q_{t-1} . Then

$$\mathbb{P}(L(d-1; (r_1-1)p_1, \dots, (r_s-1)p_s, q_1, \dots, q_{t-1})) \cong \mathbb{P}^1$$

is pencil. The dimension cannot be larger, because otherwise we could find a curve in the which passes through 2 further point, too many for Bézout. So for every point $q \in C \setminus \{p_1, \ldots, p_s, q_1, \ldots, q_{t-1}\}$ there is a unique curve D in the pencil which passes through q. This defines a birational map $C \dashrightarrow \mathbb{P}^1$ whose inverse extends to a birational morphism $\mathbb{P}^1 \to C$.

Rational curves

Remark. The equality above is sufficient but not necessary for rationality.

Example. The curve $V(z^2y^3 - x^5)$ is rational but has only two singular point of multiplicity 2 and 3. So

$$\binom{4}{2} > \binom{2}{2} + \binom{3}{2}.$$

Note that in the blow-up of the affine curve $z^2 - x^5$ we get another double point $u^2 - x^3$ in the chart (x, z) = (x, ux). Over the triple point $y^3 - x^5$ we find a further double point $w^3 - x^2$ under the transformation (x, y) = (x, wx)

Taking these singular points into account we get equality

$$6 = 1 + 3 + 1 + 1.$$

Infinitesimal near points

Let $X_2 \to X_1 \to \mathbb{P}^2$ be the blow-up of a point p followed by a blow-up of a point q on the exceptional $E_1 \subset X_1$. Then we call a points $p_1 \in E_1$ an **infinitesimal near points** to p of first order and the points $p_2 \in E_2$ in the exceptional curve of $X_2 \to X_1$ infinitesimal near points of p of second order.

So we have an infinite tree of infinitesimal near points to every point $p\in \mathbb{P}^2.$

Theorem. Let $C \subset \mathbb{P}^2$ be an irreducible curves of degree d. Then

$$\binom{d-1}{2} \ge \sum_{p} \binom{r_p}{2}$$

where the sum runs over all points of \mathbb{P}^2 including infinitesimal near points, and r_p denotes the multiplicity of the strict transfom at p. Equality holds if and only if C is birational to \mathbb{P}^1 .

The genus and its toplogical interpretation

Definition. The difference $g = \binom{d-1}{2} - \sum_{p} \binom{r_p}{2}$ as above is called the geometric **genus** of the plane curve C.

If C is a smooth projective curve then the **genus** g of C is defined as the genus of a birational plane model of C.

A smooth projective curve C over the complex numbers \mathbb{C} is also a Riemann surface. As differential manifold this a compact orientable surface S. Their differentiable classification depend only on the integer g. It is a handle body with g handles.

The number g can also be recovered from any triangulation of S. If we have a triangulation with c_0 vertices c_1 edges and c_2 faces of S then the topological Euler characteristic is

$$\chi(S) = c_0 - c_1 + c_2 = 2 - 2g.$$

The Hilbert polynomial of a smooth projective curve

The genus g of a smooth projective curve can also be computed from the Hilbert polynomial.

Theorem. The Hilbert polynomial of a smooth projective curve $C \subset \mathbb{P}^n$ of degree d has the form

$$p(t) = dt + 1 - g.$$

Corollary. The constant term of the Hilbert polynomial p(t) of a smooth projective curve C does not depend on the embedding $C \hookrightarrow \mathbb{P}^n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00