Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

Overview

- 1. Gröbner basis
- 2. Buchberger's criterion
- 3. Modules

Gröbner basis

We call the definition.

Definition. Let > be a global monomial order and $I \subset K[x_1, \ldots, x_n]$ an ideal. The **lead term ideal** of I is the ideal generated by the lead terms of elements of I:

$$\mathsf{Lt}(I) = (\{\mathsf{Lt}(f) \mid f \in I\}).$$

Elements $f_1, \ldots, f_r \in I$ are a **Gröbner basis** of I if

$$Lt(I) = (Lt(f_1), \ldots, Lt(f_r)).$$

Proposition. Let $f_1, \ldots, f_r \in I$ be a Gröbner basis of I and $f \in K[x_1, \ldots, x_n]$. Consider the remainder h of f divided by f_1, \ldots, f_r . Then

$$f \in I \iff h = 0.$$

Macaulay's theorem

Theorem. Let f_1, \ldots, f_r be a Gröbner basis of an ideal $I \subset K[x_1, \ldots, x_n]$ with respect to a global monomial order. Then the monomials $\{x^{\alpha} \mid x^{\alpha} \notin \mathsf{Lt}(I) \text{ represent a } K\text{-vector space basis for } K[x_1, \ldots, x_n]/I$.

Proof. Let \overline{f} be an element of $K[x_1,\ldots,x_n]/I$ and $f\in K[x_1,\ldots,x_n]$ a representative. Then the remainder h of f divided by f_1,\ldots,f_r represents the same element: $\overline{f}=\overline{h}$. Since $\mathrm{Lt}(I)=(\mathrm{Lt}(f_1,\ldots,\mathrm{Lt}(f_r)),$ the remainder h is a linear combination of the $x^\alpha\notin\mathrm{Lt}(I)$ by condition 2b). So the $\overline{x^\alpha}$ with $x^\alpha\notin\mathrm{Lt}(I)$ span $K[x_1,\ldots,x_n]/I$ as an K-vector space. They are linearly independent by the proposition.

Example of a division

Consider $f_1=x^2y-y^3,\ f_2=x^3\in K[x,y]$ and $>_{\mathrm{lex}}$. Then $\mathsf{Lt}(f_1)=x^2y \text{ and } \mathsf{Lt}(f_2)=x^3.$

We divide $f = x^3y$ by f_1, f_2 :

$$f = x \operatorname{Lt}(f_1) + 0 \operatorname{Lt}(f_2) + 0$$
, hence
 $f^{(1)} = f - (xf_1 + 0f_2 + 0) = xy^3$.

In the second step we obtain

$$xy^3 = 0 \operatorname{Lt}(f_1) + 0 \operatorname{Lt}(f_2) + xy^3$$
, hence $f^{(2)} = f^{(1)} - (0f_1 + 0f_2 + xy^3) = 0$.

The final result is

$$f = xf_1 + 0f_2 + xy^3.$$

Same example in a different order

We consider $f_1 = x^2y - y^3$, $f_2 = x^3 \in K[x, y]$ and $>_{lex}$ with lead terms $Lt(f_1) = x^2y$ and $Lt(f_2) = x^3$ as before.

If we divide $f = x^3y$ by x^3 , $x^2y - y^3$ we obtain

$$f = y \operatorname{Lt}(x^3) + 0 \operatorname{Lt}(x^2y - y^3) + 0$$
, hence
 $f^{(0)} = x^3y - (y(x^3) + 0(x^2y - y^3) + 0) = 0$

and the final result is $f = yf_2 + 0f_1 + 0$. Thus

Warning: The remainder of the division by polynomials f_1, \ldots, f_r can depend on the order of f_1, \ldots, f_r !

This does not happen if f_1, \ldots, f_r is a Gröbner basis.

Warning

The remainder of the division by polynomials f_1, \ldots, f_r can depend on the order of f_1, \ldots, f_r ! The reason is that the condition 2a) depends very much on the order.

Theorem. Let > be a global monomial order on $K[x_1, \ldots, x_n]$, $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ non-zero polynomials. For every $f \in K[x_1, \ldots, x_n]$ there exist uniquely determined $g_1, \ldots, g_r \in K[x_1, \ldots, x_n]$ and a unique remainder $h \in K[x_1, \ldots, x_n]$ satisfying

- 1) $f = g_1 f_1 + \ldots + g_r f_r + h$
- 2a) No term of $g_j \operatorname{Lt}(f_j)$ is divisible by a lead term $\operatorname{Lt}(f_i)$ for some i < j.
- 2b) No term of h is divisible by a lead term $Lt(f_j)$.

Buchberger's Criterion

Let $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ be poynomials. How to compute a Gröbner basis for $I = (f_1, \ldots, f_r)$?

The easiest way to discover a new lead term of (f_1, \ldots, f_r) is to consider a difference where the lead terms cancel. Consider the monomial $m_{ij} = \gcd(\mathsf{Lt}(f_i), \mathsf{Lt}(f_j))$ and the S-polynomial

$$S(f_i, f_j) := \frac{\mathsf{Lt}(f_i)}{m_{ij}} f_j - \frac{\mathsf{Lt}(f_j)}{m_{ij}} f_i.$$

The lead term in this difference cancels, so we might discover a new lead term of *I*.

Theorem. Let $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ be polynomials and > be a global monomial order. f_1, \ldots, f_r is a Gröbner basis for (f_1, \ldots, f_r) if and only if for each pair i, j the remainder of $S(f_i, f_j)$ divided by f_1, \ldots, f_r is zero.

Buchberger's algorithm

Algorithm.

Input. A global monomial order and polynomials f_1, \ldots, f_r . **Output.** A Gröbner basis f_1, \ldots, f_s for (f_1, \ldots, f_r) .

- 1. Initialize s = r and $L = \{f_1, \ldots, f_r\}$
- 2. for all i,j with $1 \le i < j \le s$ do compute the remainder h of $S(f_i,f_j)$; if $h \ne 0$ then $f_{s+1} = h; \ L = L \cup \{f_{s+1}\}; \ s = s+1;$
- 3. return L.

The algorithm terminates since monomial ideals are finitely generated.

Example

Consider $f_1 = x^3$, $f_2 = x^2y - y^3 \in K[x, y]$ and $>_{lex}$. Then

$$\mathsf{Lt}(f_1) = x^3, \mathsf{Lt}(f_2) = x^2 y$$

 $m_{12} = x^2$ and $S(f_1, f_2) = xf_2 - yf_1 = -xy^3 = 0f_1 + 0f_2 - xy^3$ has a non-zero remainder. Thus

$$f_3 = -xy^3$$
.

$$m_{13} = x$$
 and $S(f_1, f_3) = x^2 f_3 - (-y^3) f_1 = 0$.
 $m_{23} = xy$ and $S(f_2, f_3) = xf_3 - (-y^2) f_2 = -y^5$. Thus

$$f_4=-y^5$$

The S-polynomials $S(f_1, f_4)$ and $S(f_3, f_4)$ are zero. $m_{24} = y$ and $S(f_2, f_4) = x^2 f_4 - (-y^4) f_2 = -y^7 = 0 f_1 + 0 f_2 + 0 f_3 + y^2 f_4 + 0$.

So f_1, \ldots, f_4 is a Gröbner basis.

Example: 3×3 -minors of a 3×5 -matrix

Consider the ideal $I \subset K[x_1, \ldots, z_5]$ generated by the 3 minors of the matrix

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ y_1 & y_2 & y_3 & y_4 & y_5 \\ z_1 & z_2 & z_3 & z_4 & z_5 \end{pmatrix}$$

and $>_{\rm lex}$. There are $10=\binom{5}{3}$ minors. To check that they form a Gröbner basis we have to check $45=\binom{10}{2}$ S-pairs. Changing slightly the focus in Buchberger's criterion one can get away with 15 tests only.

We are going to explain how this works next.

Definition. Let $I, J \subset R$ be ideals in a ring. Then the **colon ideal** is

$$I: J = \{r \in R \mid rJ \subset I\}.$$

A second version of Buchberger's criterion

Notation. Let $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ be polynomials. We define r-1 monomial ideals as follows

$$M_j = (\mathsf{Lt}(f_1, \ldots, \mathsf{Lt}(f_{j-1})) : \mathsf{Lt}(f_j)$$

for j = 2, ..., r.

For each minimal generator $x^{\alpha} \in M_j$ the multiple $x^{\alpha} f_j$ is an expression not allowed in the division theorem by condition 2a).

Theorem. With notation as above, f_1, \ldots, f_r is a Gröbner basis for (f_1, \ldots, f_r) if and only if for each $j = 2, \ldots, r$ and each minimal generator x^{α} of M_j the remainder of $x^{\alpha}f_j$ divided by f_1, \ldots, f_r is zero.

Example: 3×3 -minors of a 3×5 -matrix, 2

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ y_1 & y_2 & y_3 & y_4 & y_5 \\ z_1 & z_2 & z_3 & z_4 & z_5 \end{pmatrix}$$

j	$Lt(f_j)$			
1	$\begin{array}{c} x_1 y_2 z_3 \\ x_1 y_2 z_4 \end{array}$	0	$0 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \\ z_1 & z_2 \\ z_1 & z_2 \end{pmatrix}$	$(2 X_3 X_4)$
2	$x_1 y_2 z_4$	(z_3)	$0 - \det \left(\begin{array}{c} y_1 \\ \end{array} \right)$	/2 <i>y</i> 3 <i>y</i> 4
3	$X_1 y_3 Z_4$	$\mid (y_2) \mid$	$v = \det \left(z_1 \right)$	z_2 z_3 z_4
	<i>X</i> 2 <i>Y</i> 3 <i>Z</i> 4		$\setminus z_1$ z	z_2 z_3 z_4
5	$x_1 y_2 z_5$	(z_3,z_4)	$\implies z_3f_2=z_4f_1+z_2f_3-z_1f_4+0.$ Similarly, all other remainders are	
6	$x_1 y_3 z_5$			
7	$x_2y_3z_5$	(x_1, z_4)		
8	<i>X</i> ₁ <i>Y</i> ₄ <i>Z</i> ₅	(y_2, y_3)	zero.	
9	<i>x</i> ₂ <i>y</i> ₄ <i>z</i> ₅	$(x_1, y_3) (x_1, x_2)$	Hence f_1, \ldots, f_{10} is a	a Gröbner basis.
10	<i>X</i> 3 <i>Y</i> 4 <i>Z</i> 5	(x_1, x_2)	1, , 10	

Modules

For our proof of Buchberger's criterion we need the concept of modules and division with remainder in free modules.

Definition. Let R be a ring. An R-module M is an abelian group together with an operation

$$R \times M \rightarrow M, (a, m) \mapsto am$$

satisfying the usual associativity and distributivity laws:

$$a(bm) = (ab)m \quad \forall a, b \in R \ \forall m \in M$$

$$1m = m \quad \forall m \in M$$

$$(a+b)m = am + bm \quad \forall a, b \in R \ \forall m \in M$$

$$a(m+n) = am + an \quad \forall a \in R \ \forall m, n \in M$$

For a field K a K-module is simply a K-vector space.

Examples of modules

R is an R-module.

A free module is module of the form $F = R^r$. It has basis vectors $e_j = (0, \dots, 1, \dots, 0)^t$ with 1 in the j-th position. An element of F is simply a column vector

$$(a_1,\ldots,a_r)^t=\sum a_je_j$$

with entries in R.

A submodule $N \subset M$ of a module M is a subgroup N satisfying

$$n \in \mathbb{N} \Rightarrow an \in \mathbb{N} \quad \forall a \in \mathbb{R} \ \forall n \in \mathbb{N}.$$

Thus an ideal I is a submodule of R.

If $f_1, \ldots f_r \in M$ then

$$(f_1...,f_r) = \{g_1f_1 + ... + g_rf_r \mid g_j \in R\}$$

is a submodule of M.

Homomorphism

An *R*-module homomorphism $\varphi: M \to N$ is a group homomorphism satisfying additionally $\varphi(am) = a\varphi(m)$.

 $\ker \varphi$ is a submodule of M and $\operatorname{im}(\varphi)$ is a submodule of N.

To say that a module is generated by elements $f_1, \ldots, f_r \in M$ is equivalent to say that

$$\varphi: F = R^r \to M, e_j \mapsto f_j$$

defines a surjective *R*-module homomorphism.

Definition. A **syzygy** between elements $f_1, \ldots, f_r \in M$ is an element $(g_1, \ldots, g_r)^t \in F = R^r$ satisfying $\sum g_j f_j = 0$. In other words, it is an element of $\ker \varphi$ where $\varphi : F = R^r \to M$ is defined by $e_j \mapsto f_j$.

Quotient modules

Let $N \subset M$ be a submodule. Then

$$f \equiv g \mod N :\Leftrightarrow f - g \in N$$

defines an equivalence relation on M with equivalence classes

$$f + N = \{f + h \mid h \in N\}.$$

The set of equivalence classes

$$M/N = \{f + N \mid f \in M\} \subset 2^M$$

carries a unique R-module structure such that

$$\pi \colon M \to M/N, f \mapsto f + N$$

becomes an R-module homomorphism.

Homomorphism theorem

Theorem. Let $\varphi \colon M \to N$ be an R-module homomorphism. Then

$$\operatorname{im}(\varphi) \cong M/\ker(\varphi).$$

Proof. $f + \ker(\varphi) \mapsto \varphi(f)$ is a well-defined isomorphism.

For $\varphi \colon M \to N$ we define the **cokernel** of φ as

$$\operatorname{coker}(\varphi) = N/\operatorname{im}(\varphi).$$

Finitely presented modules

Definition. An R-module M is **finitely generated** if there exists a surjection

$$\varphi: R^r \to M$$

M is **finitely presentable**, if one can choose the surjection $\varphi: R^r \to M$ such that the syzygy module $\ker(\varphi)$ is finitely generated as well. In that case we obtain a sequence

$$R^s \xrightarrow{\varphi_1} R^r \xrightarrow{\varphi} M \longrightarrow 0$$

with $\operatorname{im}(\varphi_1) = \ker(\varphi)$ and $M \cong \operatorname{coker}(\varphi_1)$. Such sequence is called a **finite presentation** of M.

Since a homomorphism $R^s \to R^r$ between free modules can be described by $r \times s$ -matrices with entries in R we can simply specify a finitely presented module via a matrix φ_1 .

Tasks of constructive module theory

Not so easy are the following tasks: Given two finitely presented modules

$$R^s \xrightarrow{\varphi_1} R^r \longrightarrow M \longrightarrow 0$$

and

$$R^{\ell} \xrightarrow{\psi_1} R^k \longrightarrow N \longrightarrow 0$$
,

- 1. decide whether M and N are isomorphic,
- 2. compute the R-module Hom(M, N) of all R-module homomorphisms.

We will approach these questions in case of $R = K[x_1, \dots, x_n]$ using Gröbner basis for submodules of free modules.