Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

Overview

1. Monomial orders on free modules
2. Division with remainder in free modules
3. Proof of Buchberger's criterion
4. Schreyer's corollary
5. Module membership problem

Monomial orders in free modules

Notation. We denote the polynomial ring by $S=K\left[x_{1}, \ldots, x_{n}\right]$ and the free S-module S^{k} with basis $e_{j}=(0, \ldots 1, \ldots 0)^{t}$ by

$$
F=S^{k}
$$

Definition. A monomial in F is an element of the form $x^{\alpha} e_{j}$, a term in F is an element of the form $a x^{\alpha} e_{j}$ with $a \in K$. A monomial order on F is a complete order $>$ of all the monomials in F satisfying

$$
x^{\alpha} e_{j}>x^{\beta} e_{i} \Longrightarrow x^{\gamma} x^{\alpha} e_{j}>x^{\gamma} x^{\beta} e_{i}
$$

for any two monomials in F and any monomial x^{γ} in S.
Every element $f \in F$ is a finite sum of terms and we can define the lead term of f as before:
If $f=\sum_{\alpha, j} f_{\alpha, j} x^{\alpha} e_{j}$ then $\operatorname{Lt}(f)=f_{\beta, i} x^{\beta} e_{i}$ where

$$
x^{\beta} e_{i}=\max \left\{x^{\alpha} e_{j} \mid f_{\alpha, j} \neq 0\right\}
$$

Examples of monomial orders

Definition. A monomial order $>$ on F is global if

$$
x_{i} e_{j}>e_{j} \text { holds for } i=1, \ldots, n \text { and } j=1, \ldots, k
$$

Examples. Let $>$ be a global monomial order on S. We can define a monomial order on F in two ways:

$$
\begin{aligned}
& \text { 1.) } x^{\alpha} e_{j}>_{1} x^{\beta} e_{i} \text { iff } x^{\alpha}>x^{\beta} \text { or }\left(x^{\alpha}=x^{\beta} \text { and } j>i\right) \text {, } \\
& \text { 2.) } x^{\alpha} e_{j}>2 x_{2} x_{i} \text { iff } j>i \text { or }\left(j=i \text { and } x^{\alpha}>x^{\beta}\right)
\end{aligned}
$$

which we call the monomial before component order and component before monomial order respectively.
There are many more ways to define global monomial orders on F, for example weight orders, where also the e_{j} get some weights.
A monomial order on $F=S^{r}$ gives r monomial orders on S using the isomomophism

$$
S \cong S e_{j}
$$

These might not coincide, but in all examples we are considering they do.

Division with remainder

Theorem. Let $>$ be a global monomial order on $F=S^{k}$ and let $f_{1}, \ldots, f_{r} \in F$ be non-zero polynomial vectors. For every $f \in F$ there exist uniquely determined $g_{1}, \ldots, g_{r} \in S$ and a unique remainder $h \in F$ satisfying

1) $f=g_{1} f_{1}+\ldots+g_{r} f_{r}+h$

2a) No term of $g_{j} \operatorname{Lt}\left(f_{j}\right)$ is divisible by a lead term $\operatorname{Lt}\left(f_{i}\right)$ for some $i<j$.
2b) No term of h is divisible by a lead term $\operatorname{Lt}\left(f_{j}\right)$.
Proof. As before we write

$$
f=g_{1}^{(0)} \operatorname{Lt}\left(f_{1}\right)+\ldots+g_{r}^{(0)} \operatorname{Lt}\left(f_{r}\right)+h^{(0)}
$$

satisfying 2a) and 2 b). Consider

$$
f^{(1)}=f-\left(g_{1}^{(0)} f_{1}+\ldots+g_{r}^{(0)} f_{r}+h^{(0)}\right)
$$

Then $\operatorname{Lt}\left(f^{(1)}\right)<\operatorname{Lt}(f)$ and we can iterate until $f^{(k)}=0$.

Remarks

1. Notice that to perform the division algorithm we do not need to know the monomial order precisely. We only need to know the lead terms $\operatorname{Lt}\left(f_{j}\right)$.
2. The role of the global monomial order is to guarantee that the algorithm terminates.
3. This in turn is based on the fact that monomial submodules of F are finitely generated.
4. We deduce the descending chain condition:

Every strictly decreasing chain $m_{1}>m_{2}>\ldots$ of monomials in F with respect to a global monomial order is finite.

Proof of the descending chain condition

Let $m_{1}>m_{2}>\ldots$ a (possibly infinite) strict chain of monomials in F. Let $I=\left(\left\{m_{k} \mid k \geq 1\right\}\right) \subset F$ be the monomial submodule generated by the m_{k} 's. By Dixon's Lemma I is generated by a finite set J of monomials. Set

$$
m=\min \{J\}
$$

m exists because J is finite and $>$ is a total order. Since a global monomial order refines divisibility in F we have

$$
\min (J)=\min \{\tilde{m} \mid \tilde{m} \text { is a monomial in } I\}=\min \left\{m_{k}\right\}
$$

The last minimum exists if and only if the chain is finite.

Gröbner basis in F

Let $I \subset F$ be a submodule. Then $\operatorname{Lt}(I)=(\{\operatorname{Lt}(f) \mid f \in I\})$ is the lead term module of I.
$f_{1}, \ldots, f_{r} \in I$ is a Gröbner basis iff $\operatorname{Lt}(I)=\left(\operatorname{Lt}\left(f_{1}, \ldots, \operatorname{Lt}\left(f_{r}\right)\right)\right.$.

- Since every monomial module is finitely generated, every submodule of F has a Gröbner basis.
- The remainder of $f \in F$ by a Gröbner basis f_{1}, \ldots, f_{r} is zero iff $f \in\left(f_{1}, \ldots, f_{r}\right)$.
- In particular a Gröbner basis of I is a generating set of I.
- The monomials $m \in F$ with $m \notin \operatorname{Lt}(I)$ represent a K-vector space basis of the quotient module $M=F / I$.

Buchberger's criterion

For submodules $N_{1}, N_{2} \subset M$ of an R-module M the colon ideal is defined as

$$
N_{1}: N_{2}=\left\{a \in R \mid a N_{2} \subset N_{1}\right\} .
$$

Notation. Let $f_{1}, \ldots, f_{r} \in F$ be polynomial vectors. We define monomial ideals as follows

$$
M_{j}=\left(\operatorname{Lt}\left(f_{1}, \ldots, \operatorname{Lt}\left(f_{j-1}\right)\right): \operatorname{Lt}\left(f_{j}\right)\right.
$$

for $j=2, \ldots, r$.
For each minimal generator $x^{\alpha} \in M_{j}$ the multiple $x^{\alpha} f_{j}$ is an expression not allowed in the division theorem by condition 2a).
Theorem. With notation as above, f_{1}, \ldots, f_{r} is a Gröbner basis for $\left(f_{1}, \ldots, f_{r}\right)$ if and only if for each $j=2, \ldots, r$ and each minimal generator x^{α} of M_{j} the remainder of $x^{\alpha} f_{j}$ divided by f_{1}, \ldots, f_{r} is zero.

Proof of Buchberger's criterion

If f_{1}, \ldots, f_{r} is a Gröbner basis then the remainder of $x^{\alpha} f_{j}$ is zero, because $x^{\alpha} f_{j} \in\left(f_{1}, \ldots, f_{r}\right)$. For the converse assume that the condition of the criterion is satisfied. Then for each minimal generator $x^{\alpha} \in M_{j}$ we have an division expression with remainder zero:

$$
x^{\alpha} f_{j}=\sum_{i=1}^{r} g_{i}^{(j, \alpha)} f_{i}
$$

satisfying condition 2a). Consider $F_{1}=S^{r}$ and the S-module homomorphism

$$
\varphi: F_{1} \rightarrow F, e_{i} \mapsto f_{i}
$$

Then

$$
G^{(j, \alpha)}=x^{\alpha} e_{j}-\sum_{i=1}^{r} g_{i}^{(j, \alpha)} e_{i}
$$

is a syzygy of f_{1}, \ldots, f_{r}, in other words, it is an element of $\operatorname{ker}(\varphi)$.

The induced order

We define the induced monomial order on F_{1} by

$$
\begin{aligned}
x^{\alpha} e_{j}>x^{\beta} e_{i} \Longleftrightarrow x^{\alpha} \operatorname{Lt}\left(f_{j}\right) & >x^{\beta} \operatorname{Lt}\left(f_{i}\right) \text { or } \\
& x^{\alpha} \operatorname{Lt}\left(f_{j}\right)=x^{\beta} \operatorname{Lt}\left(f_{i}\right) \text { up to a non-zero factor in } K \\
& \text { and } j>i .
\end{aligned}
$$

Remark. We could avoid the phrase up to a non-zero factor in K, if we assume that the f_{j} are monic, i.e., have leading coefficients 1 .

Lemma. With respect to the induced monomial orders the syzygies $G^{(j, \alpha)} \in F_{1}$ have the lead terms

$$
\operatorname{Lt}\left(G^{(j, \alpha)}\right)=x^{\alpha} e_{j}
$$

Proof of the Lemma

Proof. Since $x^{\alpha} f_{j}=\sum_{i=1}^{r} g_{i}^{(j, \alpha)} f_{i}$ satisfies condition 2 a) we have

$$
\operatorname{Lt}\left(x^{\alpha} f_{j}\right)=\max \left\{\operatorname{Lt}\left(g_{i}^{(j, \alpha)} f_{i}\right)\right\}
$$

and equality is achieved for $\tilde{i}=\min \left\{i \mid x^{\alpha} \operatorname{Lt}\left(f_{j}\right) \in\left(\operatorname{Lt}\left(f_{i}\right)\right)\right\}$:

$$
x^{\alpha} \operatorname{Lt}\left(f_{j}\right)=\operatorname{Lt}\left(g_{\tilde{i}}^{(j, \alpha)}\right) \operatorname{Lt}\left(f_{\tilde{i}}\right)
$$

All other terms of any $g_{i}^{(j, \alpha)} \operatorname{Lt}\left(f_{i}\right)$ are strictly smaller than $x^{\alpha} \operatorname{Lt}\left(f_{j}\right)$. Since $\tilde{i}<j$ we obtain

$$
\operatorname{Lt}\left(G^{(j, \alpha)}\right)=x^{\alpha} e_{j}
$$

from the definition of the induced order.

Proof of Buchberger's criterion, 2

Let $f=a_{1} f_{1}+\ldots+a_{r} f_{r} \in\left(f_{1}, \ldots, f_{r}\right)$ be an arbitrary element. We consider

$$
A=\sum_{i=1}^{r} a_{i} e_{i} \in F_{1}
$$

and the remainder $H=\sum_{i=1}^{r} g_{i} e_{i}$ of A divided by the $G^{(j, \alpha)}$'s.
Since the $G^{(j, \alpha)}$ are syzygies of f_{1}, \ldots, f_{r} we have

$$
f=a_{1} f_{1}+\ldots+a_{r} f_{r}=g_{1} f_{1}+\ldots+g_{r} f_{r} .
$$

Indeed

$$
A=\sum_{(j, \alpha)} g_{j, \alpha} G^{(j, \alpha)}+H \in F_{1} \Longrightarrow \varphi(A)=\varphi(H)
$$

By the definition of the monomial ideals M_{j} and the $G^{(j, \alpha)}$ we have removed in the remainder $H=\sum_{i=1}^{r} g_{i} e_{i}$ any term t from g_{j} such that $t \operatorname{Lt}\left(f_{j}\right) \in\left(\operatorname{Lt}\left(f_{1}\right), \ldots, L t\left(f_{j-1}\right)\right)$.

End of the proof and Schreyer's corollary

In other words the coefficients $g_{1}, \ldots g_{r}$ satisfy the condition 2a) for division by f_{1}, \ldots, f_{r} in F. Thus

$$
\operatorname{Lt}(f)=\max \left\{\operatorname{Lt}\left(g_{j} f_{j}\right)\right\} \in\left(\operatorname{Lt}\left(f_{1}\right), \ldots, \operatorname{Lt}\left(f_{r}\right)\right)
$$

and

$$
\operatorname{Lt}\left(\left(f_{1}, \ldots, f_{r}\right)\right)=\left(\operatorname{Lt}\left(f_{1}\right), \ldots, \operatorname{Lt}\left(f_{r}\right)\right)
$$

i.e., f_{1}, \ldots, f_{r} is a Gröbner basis of $\left(f_{1}, \ldots, f_{r}\right)$.

Corollary. If $f_{1}, \ldots, f_{r} \in F$ is a Gröbner basis then the $G^{(j, \alpha)}$'s in F_{1} form a Gröbner basis of the syzygy module $\operatorname{ker}(\varphi)$ where

$$
\varphi: F_{1} \rightarrow F, e_{j} \mapsto f_{j}
$$

Proof of the corollary

Let G be an element of $\operatorname{ker}(\varphi)$. Consider the remainder

$$
H=\left(g_{1}, \ldots, g_{r}\right)^{t}
$$

of the division of G by the $G^{(j, \alpha)}$. The coefficients g_{j} satisfy condition 2 a) for the division by f_{1}, \ldots, f_{r}. Thus

$$
\operatorname{Lt}\left(g_{1} f_{1}+\ldots+g_{r} f_{r}\right)=\max \left\{\operatorname{Lt}\left(g_{j} f_{j}\right)\right\}
$$

On the other hand $g_{1} f_{1}+\ldots+g_{r} f_{r}=\varphi(H)=\varphi(G)=0$. Thus all $g_{j}=0$ and hence H is zero.
Thus every $G \in \operatorname{ker}(\varphi)$ has remainder zero under the division by the $G^{(j, \alpha)}$. Applying the condition $2 a$) for the division by the $G^{(j, \alpha)}$'s, we see that

$$
\operatorname{Lt}(G) \in\left(\left\{\operatorname{Lt}\left(G^{(j, \alpha)}\right)\right\}\right)
$$

Example

We compute a Gröbner basis of $I=\left(y-x^{2}, z-x^{3}\right) \subset K[x, y, z]$ with respect to $>_{\text {lex }}$.

Example

We compute a Gröbner basis of $I=\left(y-x^{2}, z-x^{3}\right) \subset K[x, y, z]$ with respect to $>_{\text {lex }}$.

$x^{2}-y$	$-x$	$-y$	$-z$		
$x^{3}-z$	1				
$x y-z$	-1	x	y	$-z$	$-y^{2}$
$x z-y^{2}$		1	x	y	z
$y^{3}-z^{2}$				1	x
		z	$-y$	x	-1

Note that $y^{3}-z^{2} \in\left(y-x^{2}, z-x^{3}\right) \cap K[y, z]$.
We will later see that computing a Gröbner basis of $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ with respect to $>_{\text {lex }}$ allows to compute the elimination ideals

$$
I_{j}=I \cap K\left[x_{j+1}, \ldots, x_{n}\right]
$$

obtained from $/$ by eliminating the first j variables.

Module membership problem

Algorithm. $f \in\left(f_{1}, \ldots, f_{r}\right)$?
Input. $f_{1}, \ldots, f_{r} \in F$ and a further polynomial vector $f \in F$.
Output. A boolean value t

$$
\begin{aligned}
& \text { and if } t=\text { true coefficients } g_{1}, \ldots, g_{r} \in S \text { such that } \\
& f=g_{1} f_{1}+\ldots+g_{r} f_{r} \text {. }
\end{aligned}
$$

1. Choose a global monomial order $>$ on F.
2. Compute a Gröbner basis f_{1}, \ldots, f_{s} of $\left(f_{1}, \ldots, f_{r}\right)$ with Buchberger's algorithm.
3. Divide f by f_{1}, \ldots, f_{s} with remainder:

$$
f=\tilde{g}_{1} f_{1}+\ldots+\tilde{g}_{s} f_{s}+h
$$

4. If $h \neq 0$ the return $t=$ false else $t=$ true and recursively substitute f_{k} by a linear combination of f_{1}, \ldots, f_{k-1} for $k=s, \ldots, r+1$ to obtain an expression $f=g_{1} f_{1}+\ldots+g_{r} f_{r}$.
5. return t and g_{1}, \ldots, g_{r}.
