Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

Today we will prove Hilbert's Nullstellensatz.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. Vanishing loci of ideals
- 2. The projection theorem
- 3. Change of coordinates
- 4. Proof of the Nullstellensatz
- 5. Tower of projections

Hilbert's Nullstellensatz

Theorem. Let K be an algebraically closed field, and $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$.

$$V(f_1,\ldots,f_r) = \emptyset \iff 1 \in (f_1,\ldots,f_r).$$

Remember: $\mathbb{A}^n = K^n$ always denotes the affine space over an algebraically closed field.

$$V(f_1,\ldots,f_r)=\{a\in\mathbb{A}^n\mid f_j(a)=0 \text{ for } j=1\ldots,r\}.$$

The right hand condition can be decided by computing a Gröbner basis for f_1, \ldots, f_r . \Leftarrow is by an elementary argument true.

Vanishing loci of ideals.

Definition. Let $I \subset K[x_1, \ldots, x_n]$ be an ideal. We define

$$V(I) = \{a \in \mathbb{A}^n \mid f(a) = 0 \,\forall f \in I\}$$

Since I is finitely generated, say $I = (f_1, \ldots, f_r)$, we have

$$V(I) = V(f_1,\ldots,f_r).$$

The basic approach of the proof of the Nullstellensatz is an induction of the number of variables.

If n = 1, the theorem holds, because K[x] is a principal ideal domain. So every ideal

$$(0) \subsetneq I \subsetneq K[x]$$

is generated by a monic polynomial of positive degree, I = (f), and f has a zero because K is algebraically closed.

Basic approach of the induction step Let $I \subset K[x_1, ..., x_n]$. Consider the projection

$$\mathbb{A}^n \to \mathbb{A}^{n-1}, (a_1, \ldots, a_n) \mapsto (a_2, \ldots, a_n)$$

and the ideal

$$I_1 = I \cap K[x_2, \ldots, x_n]$$

obtained by eliminating x_1 . If $I \neq (1)$, then $I_1 \neq (1)$, so by the induction hypothesis $V(I_1) \subset \mathbb{A}^{n-1}$ is non empty. Let

$$a'=(a_2,\ldots,a_n)\in V(I_1)\subset \mathbb{A}^{n-1}$$

be a point and consider the ideal

$$(\{f(x_1,a') \mid f \in I\}) \subset K[x_1].$$

This is a principal ideal and a root a_1 of its generator would give a solution

$$a = (a_1, a') \in V(I) \subset \mathbb{A}^n.$$

A counter example

So we have a diagram

Since $I_1 \subset I$ we have $\pi(V(I)) \subset V(I_1)$. However the map is not necessarily surjective.

Example. For I = (xy - 1) we have $I_1 = (0) \subset k[y]$ but the origin $a' = 0 \in V(I_1) = \mathbb{A}^1$ has no preimage: $(\{f(x, a') \mid f \in I\}) = (x0 - 1) = (-1)$ has no zero. In a certain sense the solution (1/t, t) approaches $(\infty, 0)$ for $t \to 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

part 1

The projection theorem

Theorem. Let $I \subset K[x_1, ..., x_n]$ be an ideal, and $I_1 = I \cap K[x_2, ..., x_n]$. Suppose I contains an element f which is monic in x_1 :

$$f = x_1^d + c_1(x_2, \ldots, x_n)x_1^{d-1} + \ldots + c_d(x_2, \ldots, x_n).$$

Then the projection

$$\pi: \mathbb{A}^n \to \mathbb{A}^{n-1}, (a_1, \ldots, a_n) \mapsto (a_2, \ldots, a_n)$$

onto the last n - 1 components satisfies

$$\pi(V(I))=V(I_1).$$

Remark. Since $f \in I$ we can have at most d points $a \in V(I)$ over any given point $a' \in V(I_1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof of the projection theorem

We already know that $\pi(V(I)) \subset V(I_1)$ because $I_1 \subset I$.

To prove the converse inclusion we have to find for any $a' \in \mathbb{A}^{n-1} \setminus \pi(V(I))$ a polynomial $h \in I_1$ with $h(a') \neq 0$. We will do this in two steps.

Step 1. For every polynomial $g \in K[x_1, ..., x_n]$ there exists a polynomial $\tilde{g} \in K[x_1, ..., x_n]$ of degree < d in x_1 such that $\tilde{g}(x_1, a') = 0$ and $g \equiv \tilde{g} \mod I$.

Consider the ring homomorphism

$$\varphi: K[x_1,\ldots,x_n] \to K[x_1], g \mapsto g(x_1,a').$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Since $a' \notin \pi(V(I))$ the Nullstellensatz in one variable implies $\varphi(I) = K[x_1].$

Proof of step 1

Thus for every $g \in K[x_1, ..., x_n]$ there exists a $g_1 \in I$ with $\varphi(g) = \varphi(g_1)$. Consider $g_2 = g - g_1$. Since f is monic in x_1 , division of g_2 by f gives an expression

$$g_2 = qf + \tilde{g}.$$

The remainder \tilde{g} has degree < d in x_1 . Applying φ to this equation yields

$$0 = q(x_1, a')f(x_1, a') + \tilde{g}(x_1, a').$$

Thus $\tilde{g}(x_1, a')$ is the unique remainder of 0 under the division by $f(x_1, a')$. Hence $\tilde{g}(x_1, a') = 0 \in K[x_1]$ and

$$\widetilde{g} - g = g_2 - qf - g = g - g_1 - qf - g$$

= $-g_1 - qf \in I$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thus $g \equiv \tilde{g} \mod I$.

Step 2

Applying step 1 to the polynomials $1, x_1, x_1^2, \ldots, x_1^{d-1}$ we find expressions

$$1 \equiv g_{00} + g_{01}x_1 + \dots + g_{0,d-1}x^{d-1} \mod I$$

$$x_1 \equiv g_{10} + g_{11}x_1 + \dots + g_{1,d-1}x^{d-1} \mod I$$

$$\vdots$$

$$x_1^{d-1} \equiv g_{d-1,0} + g_{d-1,1}x_1 + \dots + g_{d-1,d-1}x^{d-1} \mod I$$

with $g_{ij} \in K[x_2, \dots, x_n]$ and $g_{ij}(a') = 0$. In matrix form we have

$$(f_1 = g_1) \begin{pmatrix} 1 \\ x_1 \end{pmatrix} = g_{d-1,0} + g_{d-1,1}x_1 + \dots + g_{d-1,d-1}x^{d-1}$$

$$(E_d - B) \begin{pmatrix} x_1 \\ \vdots \\ x_1^{d-1} \end{pmatrix} \equiv 0 \mod I$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where $B = (g_{ij})$ and E_d is the $d \times d$ identity matrix.

Step 2 continued

Multiplying the last equation with the cofactor matrix of $(E_d - B)$ we arrive at

$$\det(E_d - B) \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_1^{d-1} \end{pmatrix} \equiv 0 \mod I.$$

In particular $h = \det(E_d - B) \in I \cap K[x_2, \dots, x_n] = I_1$. Since $h(a') = \det E_d = 1 \neq 0$ we have found our desired polynomial which does not vanish at a'.

This completes the proof of the projection theorem.

part 2

A change of coordinates

Lemma. Let $f \in K[x_1, ..., x_n]$ be a non-constant polynomial. 1. If K be an infinite field and $a_2, ..., a_n \in K$ are sufficiently general elements, then substituting

$$x_j = \tilde{x}_j + a_j x_1$$
 for $j = 2, \ldots, n$

into f gives a polynomial

$$\tilde{f} = a x_1^d + c_1(\tilde{x}_2, \ldots, \tilde{x}_n) x_1^{d-1} + \ldots + c_d(\tilde{x}_2, \ldots, \tilde{x}_n)$$

with $d \geq 1$, $a \in K \setminus \{0\}$ and $c_j \in K[\tilde{x}_2, \ldots, \tilde{x}_n]$.

2. If K is an arbitrary field, then a substitution of the form

$$x_j = \tilde{x}_j + x_1^{(r^{j-1})}$$
 for $j = 2, ..., n$

for $r \in \mathbb{N}$ sufficiently large yields a polynomial \tilde{f} of the same shape.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of the Lemma, case 1

Let $d = \deg f$ denote the degree of f and let

$$f = f_d + \ldots + f_1 + f_0$$
 with $f_k = \sum_{|\alpha|=k} f_{\alpha} x^{\alpha}$

be the decomposition of $f = \sum f_{\alpha} x^{\alpha}$ into homogeneous parts. Then $f_d(1, x_2, \ldots, x_n)$ is not the zero polynomial. Hence by Exercise 1 on sheet 1 there exists $(a_2, \ldots, a_n) \in \mathbb{A}^{n-1}(K)$ with $a = f_d(1, a_2, \ldots, a_n) \neq 0$. The substitution $x_j = \tilde{x}_j + a_j x_1$ gives

 $f_d(x_1, \tilde{x}_2 + a_2 x_1, \dots, \tilde{x}_n + a_n x_1) = a x_1^d + \text{ terms of lower degree in } x_1.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thus $f(x_1, \tilde{x}_2 + a_2x_1, \dots, \tilde{x}_n + a_nx_1)$ has the desired shape.

Proof of the Lemma, case 2

Take

$$r > \max\{e \mid \exists \alpha \exists j \text{ with } f_{\alpha} \neq 0 \text{ and } \alpha_j = e\}$$

larger than any exponent occuring in a term of f. Then the monomials

$$x_1^{\sum_{j=1}^n \alpha_j r^{j-1}}$$
 for α with $\alpha \neq 0$

are all distinct, and the largest one will give the desired leading term after the substitution.

Example. For f = xy - 1 every substitution $y = \tilde{y} + a_2 x$ for $a_2 \neq 0$ has the desired effect:

$$\tilde{f} = a_2 x^2 + x \tilde{y} - 1.$$

Proof of the Nullstellensatz

Let $I \subsetneq K[x_1, \ldots, x_n]$ be a proper ideal. We have to prove that $V(I) \neq \emptyset$. If I = (0), then $V(I) = \mathbb{A}^n$. Otherwise there exists a non-constant polynomial $f \in I$. After a change of coordinates as in the Lemma we may assume that f is monic in x_1 . Thus the projection $V(I) \rightarrow V(I_1)$ is surjective. Since $1 \notin I_1 \subset I$ we obtain $V(I_1) \neq \emptyset$ from the induction hypothesis. Hence $V(I) \neq \emptyset$ as well.

Remark. Notice that we can perform the change of coordinates over the field of definition of *I*. Thus for example if $I \subset \mathbb{C}[x_1, \ldots, x_n]$ is generated by polynomials in $\mathbb{Q}[x_1, \ldots, x_n]$ we can take a linear change of coordinates defined over \mathbb{Q} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

part 3

A tower of projections

Theorem. Suppose that $I \subsetneq K[x_1, ..., x_n]$ is a proper ideal. Let $I_j = I \cap K[x_{j+1}, ..., x_n]$ be the *j*-th elimination ideal. Set

$$c = \min\{j \mid I_j = (0)\}$$

and suppose that for each j with $0 \le j \le c - 1$ the ideal I_j contains an x_{j+1} -monic polynomial of degree d_j . Then the projections $\pi_c \colon V(I) \to \mathbb{A}^{n-c}$ onto the last n - c components is surjective and each fiber

$$\pi_c^{-1}(a_{c+1},\ldots,a_n)$$

is finite of cardinality $\leq \prod_{j=0}^{c-1} d_j$.

$$V(I) \subsetneq \mathbb{A}^{n}$$

$$\downarrow$$

$$V(I_{1}) \subsetneq \mathbb{A}^{n-1}$$

$$\downarrow$$
:

$$V(I_{c-1}) \subsetneq \mathbb{A}^{n-c+1}$$
 \downarrow
 $V(I_c) = \mathbb{A}^{n-c}$

うせん 同一人用 人用 人口 マ

Remarks

1. If *I* has an infinite field of definition $L \subset K$, we can reach the assumption of the tower theorem by a triangular change of coordinates defined over *L*, i.e., with $a_{ii} \in L$:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 & & & \\ a_{21} & 1 & & 0 \\ a_{31} & a_{32} & 1 & & \\ \vdots & & & \ddots & \\ a_{n1} & a_{n2} & \dots & & 1 \end{pmatrix} \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \\ \tilde{x}_3 \\ \vdots \\ \tilde{x}_n \end{pmatrix}$$

2. In the situation of the tower theorem it is tempting to define

dim
$$V(I) = n - c$$
 and codim $V(I) = c$

because the projetion $\pi_c \colon V(I) \to \mathbb{A}^{n-c}$ is surjective with finite fibers. A problem with this definition is that it is not clear that this is independent from the choice of coordinates.