Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

Today we will discuss the algebra-geometry dictionary.

- 1. Vanishing ideals of subsets of \mathbb{A}^n
- 2. The Zariski topology
- 3. Radical ideals and the strong Nullstellensatz
- 4. Trick of Rabinowitch
- 5. Prime ideal, maximal ideals and varieties
- 6. Coordinate ring
- 7. Morphisms between algebraic sets and varieties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Vanishing loci and vanishing ideals

Let *K* be an algebraically closed field. For any ideal $J \subset K[x_1, \ldots, x_n]$ we have defined its **vanishing loci** as

$$V(J) = \{a \in \mathbb{A}^n \mid f(a) = 0 \ \forall f \in J\}.$$

Conversely for $A \subset \mathbb{A}^n$ an arbitrary subset we define the **vanishing** ideal as

$$\mathsf{I}(A) = \{ f \in \mathsf{K}[x_1, \ldots, x_n] \mid f(a) = 0 \ \forall a \in A \}.$$

Example. Consider the set $C = \{(t, t^2, t^3) \in \mathbb{A}^3 \mid t \in \mathbb{A}^1\}$. The vanishing ideal of *C* is the kernel of the ring homomorphism

$$\varphi: \mathcal{K}[x, y, z] \to \mathcal{K}[t], x \mapsto t, y \mapsto t^2, z \mapsto t^3$$

Claim. $I(C) = \ker \varphi = (y - x^2, z - x^3)$

・ロト ・ ロ・ ・ ヨ・ ・ ヨ・ ・ ロ・

Twisted cubic curve

Proof of the Claim. $(y - x^2, z - x^3) \subset I(C)$ is clear. For the converse pick a global monomial order such that $Lt(y - x^2) = y$ and $Lt(z - x^3)$. Let $f \in \ker \varphi$. Division with remainder gives

$$f = g_1(y - x^2) + g_2(z - x^3) + h$$

with no term of *h* divisible by *y* or *z*, i.e., $h \in K[x] \subset K[x, y, z]$. From $0 = f(t, t^2, t^3) = h(t)$ we deduce that *h* is the zero polynomial. Hence $f \in (y - x^2, z - x^3)$.

$$\mathcal{C} = \{(t,t^2,t^3) \in \mathbb{A}^3 \mid t \in \mathbb{A}^1\}$$

is called the twisted cubic curve.

Basic properties of the correspondence V

Today we will study the correspondences

{ ideals of $\mathcal{K}[x_1, \ldots, x_n]$ } $\stackrel{V}{\longleftrightarrow}$ {subsets of \mathbb{A}^n }

$$J\mapsto V(J), \quad \mathsf{I}(A)\leftarrow A.$$

Proposition. Let $S = K[x_1, ..., x_n]$ and let $I, J, I_{\lambda} \subset S$ be ideals.

1)
$$V(0) = \mathbb{A}^n$$
 and $V(1) = \emptyset$.
2) $I \subset J \implies V(I) \supset V(J)$.
3) $V(I) \cup V(J) = V(I \cap J) = V(I \cdot J)$.
4) $\bigcap_{\lambda} V(I_{\lambda}) = V(\sum_{\lambda} I_{\lambda})$.
5) $V(x_1 - a_1, \dots, x_n - a_n) = \{(a_1, \dots, a_n)\}$
Proof. Only 3) needs an argument. Since $I \cdot J \subset I \cap J \subset J$ the nclusions $V(J) \subset V(I \cap J) \subset V(I \cdot J)$ follow by property 2. For the converse let $a \in V(I \cdot J)$ be a point not contained in $V(J)$. By assumption $\exists g \in J$ with $g(a) \neq 0$. Let $f \in I$ be arbitrarily. Since $f \cdot g \in I \cdot J$, we have $f(a)g(a) = 0$. Since $g(a) \neq 0$, we deduce $f(a) = 0$. Hence $a \in V(I)$.

The Zariski topology

Definition. An algebraic subset $A \subset \mathbb{A}^n$ is a subset of the form A = V(J).

Condition 1), 3) and 4) of the proposition can be rephrased by saying that the collection of algebraic subsets of \mathbb{A}^n form the closed sets of a topology on \mathbb{A}^n . We call the complement $U = \mathbb{A}^n \setminus A$ of an algebraic set **Zariski open**.

Recall, a topology on a set X is a subset $\mathcal{T} \subset 2^X$ satisfying 1) $\emptyset \in \mathcal{T}, X \in \mathcal{T},$ 3) $U_1, U_2 \in \mathcal{T} \implies U_1 \cap U_2$, and 4) $U_\lambda \in \mathcal{T} \implies \bigcup_\lambda U_\lambda \in \mathcal{T}.$ The elements $U \in \mathcal{T}$ are called the open sets of the topolog

The elements $U \in \mathcal{T}$ are called the open sets of the topology and their complements $A = X \setminus U$ are called the closed sets of the topology. The closure of an arbitrary subset $Y \subset X$ is

$$\overline{Y} = \bigcap_{\substack{A \supset Y \\ \text{closed}}} A.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is the smallest closed set containing Y.

Basic properties of the correspondence I

Proposition. Let $S = K[x_1, ..., x_n]$ and let $A, B \subset \mathbb{A}^n$.

1)
$$I(\emptyset) = (1) \text{ and } I(\mathbb{A}^n) = (0).$$

2) $A \subset B \implies I(A) \supset I(B).$
3) $I(A \cup B) = I(A) \cap I(B).$
4) $V(I(A)) \supset A$ and equality holds if A is an algebraic subset

$$V(I(A)) = \overline{A}$$

holds always.

5)
$$I(\{(a_1,\ldots,a_n)\}) = (x_1 - a_1,\ldots,x_n - a_n).$$

Remark. If $\mathbb{F}_q \subset K$ is a finite subfield, then the set of \mathbb{F}_q -rational points $\mathbb{A}^n(\mathbb{F}_q)$ is algebraic since it is a finite union of q^n points.

$$\mathsf{I}(\mathbb{A}^n(\mathbb{F}_q)) = (x_1^q - x_1, \dots, x_n^q - x_n)$$

is defined over the prime field \mathbb{F}_p where $p = \operatorname{char} K$ and $q = p^r$. Our next goal is to describe I(V(J)).

The strong version of Hilbert's Nullstellensatz

Definition. Let *R* be a ring and $J \subset R$ an ideal. The **radical** of *I* is the ideal

$$\operatorname{rad}(J) = \{ f \in R \mid \exists n \in \mathbb{N} \text{ such that } f^n \in J \}.$$

To see that this is indeed an ideal we use

$$f^n \in J \text{ and } g^m \in J \implies (f+g)^{n+m-1} \in J.$$

Theorem. Let *K* be an algebraically closed field and let $J \subset K[x_1, ..., x_n]$ be an ideal. Then I(V(J)) = rad(J).

The inclusion $rad(J) \subset I(V(J))$ is elementary:

$$f \in \operatorname{rad}(J) \implies f^{N} \in J \text{ for some } N \in \mathbb{N}$$
$$\implies 0 = f^{N}(a) = (f(a))^{N} \forall a \in V(J)$$
$$\implies f(a) = 0 \forall a \in V(J)$$
$$\implies f \in I(V(J)).$$

The trick of Rabinowitch

Let $J = (f_1, \ldots, f_r)$ and $f \in I(V(J))$. We have to show that

$$f^m \in (f_1,\ldots,f_r)$$

for a suitable $m \in \mathbb{N}$.

Consider an additional variable y and the ideal

 $(f_1, \ldots, f_r, yf - 1) \subset K[x_1, \ldots, x_n, y].$ If $(a, b) \in \mathbb{A}^n \times \mathbb{A}^1 = \mathbb{A}^{n+1}$ lies in $V(f_1, \ldots, f_r, yf - 1)$, then $f_1(a) = 0, \ldots, f_r(a) = 0$. Thus $a \in V(J)$. Hence f(a) = 0 and the last polynomal $(fy - 1)(a, b) = f(a)b - 1 = -1 \neq 0$. Thus $V(f_1, \ldots, f_r, yf - 1) = \emptyset$ and the weak version of the Nullstellensatz implies

$$1 = g_1 f_1 + \ldots + g_r f_r + g_{r-1} (yf - 1)$$

for suitable polynomials $g_1, \ldots, g_{r+1} \in K[x_1, \ldots, x_n, y]$.

The trick of Rabinowitch 2

Let *m* be the maximal power in which *y* occurs in g_1, \ldots, g_r . Then

$$f^m \equiv \tilde{g}_1 f_1 + \ldots + \tilde{g}_r f_r \mod (yf-1)$$

for polynomials $\tilde{g}_1, \ldots, \tilde{g}_r \in K[x_1, \ldots, x_n]$ since we can remove the appearance of y using $fy \equiv 1 \mod (yf - 1)$. Since $K[x_1, \ldots, x_n]$ is a subring of $K[x_1, \ldots, x_n, y]/(yf - 1)$, we obtain

$$f^m = \tilde{g}_1 f_1 + \ldots + \tilde{g}_r f_r \in K[x_1, \ldots, x_n].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thus $f \in rad(J)$.

The coordinate ring

Thus for an algebraically closed field K the correspondences V and I induce bijections

{ radical ideals of $K[x_1, \ldots, x_n]$ } $\stackrel{V}{\longleftrightarrow}$ {algebraic subsets of \mathbb{A}^n }

$$J\mapsto V(J), \quad \mathsf{I}(A)\leftarrow A.$$

A radical ideal in a ring R is an ideal J satisfying rad(J) = J. Note that rad(rad(I)) = rad(I) always holds. Hence the radical of an ideal is always a radical ideal.

Definition. The **coordinate ring** of an algebraic set $A \subset \mathbb{A}^n$ is the residue ring

$$K[A] = K[x_1,\ldots,x_n]/\operatorname{I}(A).$$

This can be regarded as a subring of the ring $K^A = \{f : A \to K\}$ of *K*-valued functions on *A*. It is the *K*-subalgebra generated by the coordinate functions $x_i|_A$ of x_i restricted to *A*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

part 2

Prime ideals and maximal ideals

Definition. An ideal $\mathfrak{p} \subset R$ in ring R is called a **prime ideal** if

 $ab \in \mathfrak{p} \implies a \in \mathfrak{p} \text{ or } b \in \mathfrak{p}$

holds for all $a, b \in R$, equivalently, R/\mathfrak{p} is an integral domain. A **maximal ideal** $\mathfrak{m} \subsetneq R$ is an ideal which maximal with respect to inclusion for proper ideals, i.e.,

$$\mathfrak{m}\subset I\subsetneq R\implies \mathfrak{m}=I$$

holds for all proper ideals $I \subsetneq R$. An equivalent condition is that R/\mathfrak{m} is a field. In the ring $K[x_1, \ldots, x_n]$ these types of ideals have a geometric interpretation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Irreducible algebraic sets

Definition. An algebraic set $A \subset \mathbb{A}^n$ satisfying

$$A = A_1 \cup A_2 \implies A = A_1 \text{ or } A = A_2$$

for all **algebraic** subsets A_1, A_2 is called **irreducible**. Irreducible algebraic sets are also called **varieties**

Example.

$$V(xy,yz) = V(y) \cup V(x,z)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is a reducible algebraic set.

Irreducible algebra sets 2

Proposition. An algebraic subset $A \subset \mathbb{A}^n$ is irreducible iff $I(A) \subset K[x_1, ..., x_n]$ is a prime ideal.

Proof. Suppose $A = A_1 \cup A_2$ with $A \supseteq A_j$ for j = 1, 2. Consider $f_j \in I(A_j) \setminus I(A)$. Then $f_1 f_2 \in I(A)$ with both factors not in I(A). So I(A) is not prime. Conversely if I(A) is not prime and $fg \in I(A)$ a product whose factors are not in I(A), then

$$A = V(I(A)) = V((fg) + I(A)) = V((f) + I(A)) \cup V((g) + I(A))$$

shows that A is not irreducible.

Example. V(y) and V(x, z) are irreducible because $K[x, y, z]/(y) \cong K[x, z]$ and $K[x, y, z]/(x, z) \cong K[y]$ are integral domains. Thus

$$V(xy, yz) = V(y) \cup V(x, z)$$

is a decomposition into irreducible algebraic sets.

The algebra-geometry dictionary

Theorem. Let K be an algebraically closed field. The correspondences V and I induce bijections

 $\begin{cases} \text{ radical ideals of } K[x_1, \dots, x_n] \} & \leftrightarrow & \{ \text{algebraic subsets of } \mathbb{A}^n \} \\ \cup & \cup \\ \{ \text{ prime ideals of } K[x_1, \dots, x_n] \} & \leftrightarrow & \{ \text{ irreducible alg. subsets of } \mathbb{A}^n \} \\ \cup & \cup \\ \{ \text{maximal ideals of } K[x_1, \dots, x_n] \} & \leftrightarrow & \{ \text{ points of } \mathbb{A}^n \} \end{cases}$

The last bijection still needs a proof. If $\mathfrak{m} \subset K[x_1, \ldots, x_n]$ is a maximal ideal, then $V(\mathfrak{m}) \neq \emptyset$ by the Nullstellensatz. If $a = (a_1, \ldots, a_n) \in V(\mathfrak{m})$ then

$$\mathfrak{m} \subset (x_1 - a_1, \dots, x_n - a_n)$$

and the maximality of \mathfrak{m} implies that equality holds.

part 3

Morphism between algebraic sets

Definition. Let $A \subset \mathbb{A}^n$ and $B \subset \mathbb{A}^m$ be algebraic sets. A morphism

$$\Phi: A \to \mathbb{A}^m, a \mapsto \Phi(a) = (\overline{f}_1(a), \ldots, \overline{f}_m(a))$$

is a map given by an *m* tupel of function $\overline{f}_1, \ldots, \overline{f}_m \in K[A]$. A **morphism**

 $\varphi: A \to B$

is given by a morphism $\Phi : A \to \mathbb{A}^m$ such that $\Phi(a) \in B \ \forall a \in A$. Thus for a morphism $\varphi : A \to B$ we always have a diagram

Algebra side of a morphism

A morphism $\Phi: A \to \mathbb{A}^m$ specifies a ring homomorphism

$$\Phi^*\colon K[y_1,\ldots,y_m]\to K[A], y_j\mapsto \overline{f}_j,$$

and conversely any K-algebra homomorphism Φ^* induces a morphism $\Phi : A \to \mathbb{A}^m$.

A morphism $\varphi: A \rightarrow B$ corresponds to a ring homomorphism

$$\varphi^*: K[B] \to K[A].$$

While Φ is easy to specify, morphisms $\varphi : A \to B$ are difficult to find: The tupel $(\overline{f}_1, \ldots, \overline{f}_m)$ has to satisfy

$$F(\overline{f}_1,\ldots,\overline{f}_m)=0\in K[A]$$

for all equations $F(y_1, \ldots, y_m) \in I(B) \subset K[y_1, \ldots, y_m]$.

Isomorphisms

Thus we have

 $Mor(A, B) \cong Hom_{K-algebra}(K[B], K[A]), \quad \varphi \mapsto \varphi^*.$ **Definition.** A morphism $\varphi : A \to B$ is an **isomorphism** if there exists a morphism $\psi : B \to A$ with

 $\psi \circ \varphi = id_A$ and $\varphi \circ \psi = id_B$.

Proposition. A and B are isomorphic iff $K[A] \cong K[B]$.

Example. $A = V(y - x^2) \subset \mathbb{A}^2$ and \mathbb{A}^1 are isomorphic because

$$K[x] \rightarrow K[x,y]/(y-x^2)$$

is an isomorphism.

Examples of morphisms

1) The $K[x] \hookrightarrow K[x, x^{-1}] \cong K[x, y]/(xy - 1)$ defines a morphism of the hyperbola A = V(xy - 1) to \mathbb{A}^1 . This corresponds to the projection onto the x-axis.

In particular we see that the image of a morphism is not necessarily again an algebraic set.

Examples of morphisms

2)

 $\mathbb{A}^1 o B = V(z^2-y^3) \subset \mathbb{A}^2, x \mapsto (x^2,x^3)$ is a morphism because $(x^3)^2 - (x^2)^3 = 0.$

Although this is a bijection as map of sets, this is not an isomorphism because

$$K[y,z]/(z^2-y^3) \cong K[x^2,x^3] \hookrightarrow K[x]$$

is not surjective.

part 4