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Overview

Today we will discuss the algebra-geometry dictionary.

1. Vanishing ideals of subsets of An

2. The Zariski topology

3. Radical ideals and the strong Nullstellensatz

4. Trick of Rabinowitch

5. Prime ideal, maximal ideals and varieties

6. Coordinate ring

7. Morphisms between algebraic sets and varieties



Vanishing loci and vanishing ideals

Let K be an algebraically closed field. For any ideal
J ⊂ K [x1, . . . , xn] we have defined its vanishing loci as

V (J) = {a ∈ An | f (a) = 0 ∀f ∈ J}.

Conversely for A ⊂ An an arbitrary subset we define the vanishing
ideal as

I(A) = {f ∈ K [x1, . . . , xn] | f (a) = 0 ∀a ∈ A}.

Example. Consider the set C = {(t, t2, t3) ∈ A3 | t ∈ A1}. The
vanishing ideal of C is the kernel of the ring homomorphism

ϕ : K [x , y , z ]→ K [t], x 7→ t, y 7→ t2, z 7→ t3

Claim. I(C ) = kerϕ = (y − x2, z − x3)



Twisted cubic curve

Proof of the Claim. (y − x2, z − x3) ⊂ I(C ) is clear. For the
converse pick a global monomial order such that
Lt(y − x2) = y and Lt(z − x3). Let f ∈ kerϕ. Division with
remainder gives

f = g1(y − x2) + g2(z − x3) + h

with no term of h divisible by y or z , i.e., h ∈ K [x ] ⊂ K [x , y , z ].
From 0 = f (t, t2, t3) = h(t) we deduce that h is the zero
polynomial. Hence f ∈ (y − x2, z − x3).

C = {(t, t2, t3) ∈ A3 | t ∈ A1}

is called the twisted cubic curve.



Basic properties of the correspondence V
Today we will study the correspondences

{ ideals of K [x1, . . . , xn]} V // {subsets of An}
I

oo

J 7→ V (J), I(A)← A.

Proposition. Let S = K [x1, . . . , xn] and let I , J, Iλ ⊂ S be ideals.

1) V (0) = An and V (1) = ∅.
2) I ⊂ J =⇒ V (I ) ⊃ V (J).
3) V (I ) ∪ V (J) = V (I ∩ J) = V (I · J).
4)

⋂
λ V (Iλ) = V (

∑
λ Iλ).

5) V (x1 − a1, . . . , xn − an) = {(a1, . . . , an)}
Proof. Only 3) needs an argument. Since I · J ⊂ I ∩ J ⊂ J the
inclusions V (J) ⊂ V (I ∩ J) ⊂ V (I · J) follow by property 2. For
the converse let a ∈ V (I · J) be a point not contained in V (J). By
assumption ∃g ∈ J with g(a) 6= 0. Let f ∈ I be arbitrarily. Since
f · g ∈ I · J, we have f (a)g(a) = 0. Since g(a) 6= 0, we deduce
f (a) = 0. Hence a ∈ V (I ).



The Zariski topology
Definition. An algebraic subset A ⊂ An is a subset of the form
A = V (J).

Condition 1), 3) and 4) of the proposition can be rephrased by
saying that the collection of algebraic subsets of An form the
closed sets of a topology on An. We call the complement
U = An \ A of an algebraic set Zariski open.

Recall, a topology on a set X is a subset T ⊂ 2X satisfying

1) ∅ ∈ T , X ∈ T ,
3) U1,U2 ∈ T =⇒ U1 ∩ U2, and
4) Uλ ∈ T =⇒

⋃
λ Uλ ∈ T .

The elements U ∈ T are called the open sets of the topology and
their complements A = X \ U are called the closed sets of the
topology. The closure of an arbitrary subset Y ⊂ X is

Y =
⋂
A⊃Y
closed

A.

This is the smallest closed set containing Y .



Basic properties of the correspondence I
Proposition. Let S = K [x1, . . . , xn] and let A,B ⊂ An.

1) I(∅) = (1) and I(An) = (0).
2) A ⊂ B =⇒ I(A) ⊃ I(B).
3) I(A ∪ B) = I(A) ∩ I(B).
4) V (I(A)) ⊃ A and equality holds if A is an algebraic subset.

V (I(A)) = A

holds always.
5) I({(a1, . . . , an)}) = (x1 − a1, . . . , xn − an).

Remark. If Fq ⊂ K is a finite subfield, then the set of Fq-rational
points An(Fq) is algebraic since it is a finite union of qn points.

I(An(Fq)) = (xq1 − x1, . . . , x
q
n − xn)

is defined over the prime field Fp where p = charK and q = pr .

Our next goal is to describe I(V (J)).
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The strong version of Hilbert’s Nullstellensatz
Definition. Let R be a ring and J ⊂ R an ideal. The radical of I
is the ideal

rad(J) = {f ∈ R | ∃n ∈ N such that f n ∈ J}.
To see that this is indeed an ideal we use

f n ∈ J and gm ∈ J =⇒ (f + g)n+m−1 ∈ J.

Theorem. Let K be an algebraically closed field and let
J ⊂ K [x1, . . . , xn] be an ideal. Then

I(V (J)) = rad(J).

The inclusion rad(J) ⊂ I(V (J)) is elementary:

f ∈ rad(J) =⇒ f N ∈ J for some N ∈ N
=⇒ 0 = f N(a) = (f (a))N ∀a ∈ V (J)

=⇒ f (a) = 0 ∀a ∈ V (J)

=⇒ f ∈ I(V (J)).



The trick of Rabinowitch
Let J = (f1, . . . , fr ) and f ∈ I(V (J)). We have to show that

f m ∈ (f1, . . . , fr )

for a suitable m ∈ N.
Consider an additional variable y and the ideal

(f1, . . . , fr , yf − 1) ⊂ K [x1, . . . , xn, y ].

If (a, b) ∈ An × A1 = An+1 lies in V (f1, . . . , fr , yf − 1), then
f1(a) = 0, . . . , fr (a) = 0. Thus a ∈ V (J). Hence f (a) = 0 and the
last polynomal (fy − 1)(a, b) = f (a)b − 1 = −1 6= 0. Thus
V (f1, . . . , fr , yf − 1) = ∅ and the weak version of the
Nullstellensatz implies

1 = g1f1 + . . .+ gr fr + gr−1(yf − 1)

for suitable polynomials g1, . . . , gr+1 ∈ K [x1, . . . , xn, y ].



The trick of Rabinowitch 2

Let m be the maximal power in which y occurs in g1, . . . , gr . Then

f m ≡ g̃1f1 + . . .+ g̃r fr mod (yf − 1)

for polynomials g̃1, . . . , g̃r ∈ K [x1, . . . , xn] since we can remove the
appearance of y using fy ≡ 1 mod (yf − 1).
Since K [x1, . . . , xn] is a subring of K [x1, . . . , xn, y ]/(yf − 1), we
obtain

f m = g̃1f1 + . . .+ g̃r fr ∈ K [x1, . . . , xn].

Thus f ∈ rad(J).



The coordinate ring
Thus for an algebraically closed field K the correspondences V and
I induce bijections

{ radical ideals of K [x1, . . . , xn]} V // {algebraic subsets of An}
I

oo

J 7→ V (J), I(A)← A.

A radical ideal in a ring R is an ideal J satisfying rad(J) = J. Note
that rad(rad(I )) = rad(I ) always holds. Hence the radical of an
ideal is always a radical ideal.

Definition. The coordinate ring of an algebraic set A ⊂ An is
the residue ring

K [A] = K [x1, . . . , xn]/ I(A).

This can be regarded as a subring of the ring KA = {f : A→ K}
of K -valued functions on A. It is the K -subalgebra generated by
the coordinate functions xj |A of xj restricted to A.
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Prime ideals and maximal ideals

Definition. An ideal p ⊂ R in ring R is called a prime ideal if

ab ∈ p =⇒ a ∈ p or b ∈ p

holds for all a, b ∈ R, equivalently, R/p is an integral domain.
A maximal ideal m ( R is an ideal which maximal with respect to
inclusion for proper ideals, i.e.,

m ⊂ I ( R =⇒ m = I

holds for all proper ideals I ( R. An equivalent condition is that
R/m is a field.
In the ring K [x1, . . . , xn] these types of ideals have a geometric
interpretation.



Irreducible algebraic sets

Definition. An algebraic set A ⊂ An satisfying

A = A1 ∪ A2 =⇒ A = A1 or A = A2

for all algebraic subsets A1,A2 is called irreducible. Irreducible
algebraic sets are also called varieties

Example.
V (xy , yz) = V (y) ∪ V (x , z)

is a reducible algebraic set.



Irreducible algebra sets 2
Proposition. An algebraic subset A ⊂ An is irreducible iff
I(A) ⊂ K [x1, . . . , xn] is a prime ideal.

Proof. Suppose A = A1 ∪ A2 with A ) Aj for j = 1, 2. Consider
fj ∈ I(Aj) \ I(A). Then f1f2 ∈ I(A) with both factors not in I(A).
So I(A) is not prime. Conversely if I(A) is not prime and fg ∈ I(A)
a product whose factors are not in I(A) ,then

A = V (I(A)) = V ((fg) + I(A)) = V ((f ) + I(A)) ∪ V ((g) + I(A))

shows that A is not irreducible.

Example. V (y) and V (x , z) are irreducible because
K [x , y , z ]/(y) ∼= K [x , z ] and K [x , y , z ]/(x , z) ∼= K [y ] are integral
domains. Thus

V (xy , yz) = V (y) ∪ V (x , z)

is a decomposition into irreducible algebraic sets.



The algebra-geometry dictionary
Theorem. Let K be an algebraically closed field. The
correspondences V and I induce bijections

{ radical ideals of K [x1, . . . , xn]} ↔ {algebraic subsets of An}
∪ ∪

{prime ideals of K [x1, . . . , xn]} ↔ {irreducible alg. subsets of An}
∪ ∪

{maximal ideals of K [x1, . . . , xn]} ↔ {points of An}

The last bijection still needs a proof. If m ⊂ K [x1, . . . , xn] is a
maximal ideal, then V (m) 6= ∅ by the Nullstellensatz. If
a = (a1, . . . , an) ∈ V (m) then

m ⊂ (x1 − a1, . . . xn − an)

and the maximality of m implies that equality holds.
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Morphism between algebraic sets

Definition. Let A ⊂ An and B ⊂ Am be algebraic sets. A
morphism

Φ : A→ Am, a 7→ Φ(a) = (f 1(a), . . . , f m(a))

is a map given by an m tupel of function f 1, . . . , f m ∈ K [A]. A
morphism

ϕ : A→ B

is given by a morphism Φ : A→ Am such that Φ(a) ∈ B ∀a ∈ A.

Thus for a morphism ϕ : A→ B we always have a diagram



Algebra side of a morphism

A morphism Φ : A→ Am specifies a ring homomorphism

Φ∗ : K [y1, . . . , ym]→ K [A], yj 7→ f j ,

and conversely any K -algebra homomorphism Φ∗ induces a
morphism Φ : A→ Am.
A morphism ϕ : A→ B corresponds to a ring homomorphism

ϕ∗ : K [B]→ K [A].

While Φ is easy to specify, morphisms ϕ : A→ B are difficult to
find: The tupel (f 1, . . . , f m) has to satisfy

F (f 1, . . . , f m) = 0 ∈ K [A]

for all equations F (y1, . . . , ym) ∈ I(B) ⊂ K [y1, . . . , ym].



Isomorphisms

Thus we have

Mor(A,B) ∼= HomK−algebra(K [B],K [A]), ϕ 7→ ϕ∗.

Definition. A morphism ϕ : A→ B is an isomorphism if there
exists a morphism ψ : B → A with

ψ ◦ ϕ = idA and ϕ ◦ ψ = idB .

Proposition. A and B are isomorphic iff K [A] ∼= K [B].

Example. A = V (y − x2) ⊂ A2 and A1 are isomorphic because

K [x ]→ K [x , y ]/(y − x2)

is an isomorphism.



Examples of morphisms

1) The K [x ] ↪→ K [x , x−1] ∼= K [x , y ]/(xy − 1) defines a
morphism of the hyperbola A = V (xy − 1) to A1. This
corresponds to the projection onto the x-axis.

In particular we see that the image of a morphism is not
necessarily again an algebraic set.



Examples of morphisms

2)
A1 → B = V (z2 − y3) ⊂ A2, x 7→ (x2, x3)

is a morphism because (x3)2 − (x2)3 = 0.

Although this is a bijection as map of sets, this is not an
isomorphism because

K [y , z ]/(z2 − y3) ∼= K [x2, x3] ↪→ K [x ]

is not surjective.
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