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Overview

Today’s topics are decomposition into irreducible components,
Noetherian rings and primary decomposition.

1. Component decomposition

2. Noetherian rings

3. Primary ideals and primary decomposition



Component decomposition
Last time we saw that

V (xy , yz) = V (y) ∪ V (x , z)

is a decomposition into irreducible algebraic subsets.

Theorem. Let K be an algebraically closed field, and let A ⊂ An

be an algebraic subset. Then there exist finitely may irreducible
algebraic subsets Cj ⊂ An such that

A = C1 ∪ C2 ∪ . . . ∪ Cr .

Definition. A component decomposition A = C1 ∪ C2 ∪ . . .Cr is
called irredundant if Ci 6⊂ Cj for i 6= j .

By deleting Ci which are contained in a Cj one can pass from a
component decomposition to an irredundant one.



Uniqueness of the component decomposition
Theorem. An irredundant decomposition A = C1 ∪ C2 ∪ . . . ∪ Cr

into irreducible algebraic sets Cj is unique up to the order.

Proof. Suppose

A = C1 ∪ C2 ∪ . . . ∪ Cr = C ′1 ∪ C ′2 ∪ . . . ∪ C ′s

are two irredundant decompositions. Then each C ′` is contained in
some Cj because

C ′` = (C ′` ∩ C1) ∪ (C ′` ∩ C2) ∪ . . . ∪ (C ′` ∩ Cr )

implies C ′` = (C ′ ∩ Cj) for some j since C ′` is irreducible. Similarly
each Cj ⊂ C ′k for some k . So C ′` ⊂ Cj ⊂ C ′k and we have equality
because C ′1 ∪ C ′2 ∪ . . . ∪ C ′s is irredundant. Thus each C ′` a
coincides with unique Cj and vice versa. In particular r = s.



Towards the existence of a component decomposition
Suppose A ⊂ An is an algebraic set. If A is irreducible, we are
done. Otherwise we can can decompose

A = A1 ∪ A2

into proper algebraic subsets. If these are irreducible we are done,
otherwise we decompose each reducible subset again. Thus we get
a tree of smaller and smaller algebraic subsets.

The problem is to show that this process terminates. If we
translate this with our algebra geometry dictionary, we get a tree
of larger and larger radical ideals of K [x1, . . . , xn].



Noetherian rings
Theorem. Let R be a ring. TFAE

1) Each ideal I ⊂ R is finitely generated.
2) Every ascending chain of ideals

I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ . . .

becomes stationary, i.e., there exists an N such that
IN = IN+1 = IN+2 = . . . .

3) Every nonempty set M of ideals contains maximal elements
with respect to inclusion, i.e.,

∃ I ∈M such that I ⊂ J ⇒ I = J ∀J ∈M.

It was Emmy Noether who noticed the importance of these
conditions. To honor her we call rings which statisfy the equivalent
conditions noetherian. By Hilbert’s basis theorem K [x1, . . . , xn] is
noetherian.



Proof of the theorem
1)⇒ 2): Let I1 ⊂ I2 ⊂ . . . be a chain of ideals. Then

J =
∞⋃
j=1

Ij

is an ideal as well:

f , g ∈ J ⇒ f ∈ Ik , g ∈ I` for indices `, k ∈ N
⇒ f + g ∈ Imax(k,`) ⊂ J

By 1) the ideal J is finitely generated, say J = (f1, . . . , fr ). Each
fk ∈ Ij(k). If we take N = max{j(k) | k = 1, . . . , r}, then

J = (f1, . . . , fr ) ⊂ IN ⊂ IN+1 ⊂ . . . ⊂ J

and we have equality Ik = Ik+1 ∀k ≥ N.



Proof of the theorem, 2
2)⇒ 3): Let M be a non-empty set of ideals. Suppose there are
no maximal elements in M. Then for each I ∈M we find a
J ∈M with I ( J. Inductively we find a chain

I1 ( I2 ( . . .

which does not become stationary in contradiction to 2).

3)⇒ 1): Let J be an ideal and consider the set

M = {I ⊂ J | I is finitely generated}.
M 6= ∅ because (0) ∈M. Let I = (f1, . . . , fr ) ∈M be a maximal
element. We have to prove I = J. Let f ∈ J be an arbitrary
element. Then also (f1, . . . , fr , f ) is finitely generated and
I ⊂ (f1, . . . , fr , f ) ∈M. By the maximality of I we get
I = (f1, . . . , fr , f ), i.e., f ∈ I . This proves J ⊂ I and equality
holds.

part 1



Existence of the component decomposition
Using our dictionary we obtain
Corollary.

2’) Every descending chain of algebraic subsets

A1 ⊃ A2 ⊃ . . .

becomes stationary.
3’) Every nonempty set M of algebraic subsets of An has a

minimal element with respect to inclusion.

To prove the existence of a component composition is a typical
proof by the so-called noetherian induction: Consider the set

M = {A ⊂ An |A is an nonempty algebraic set, which is

not a finite union of irreducible algebraic subsets}
We have to prove that M = ∅.



Existence of the component decomposition, continued
Suppose M 6= ∅. Then we can consider a minimal element
A ∈M. A is not irreducible by the definition of M. Thus there
exists a decomposition

A = A1 ∪ A2

in strictly smaller algebraic sets. By the minimality of A both A1

and A2 are finite unions of irreducible algebraic sets. But then so is
A, a contradiction. We must have M = ∅.
The same argument shows

Theorem. Let R be a noetherian ring. Every radical ideal I ⊂ R is
a finite intersection of prime ideals

I = p1 ∩ p2 ∩ . . . ∩ pr .

Remark. Note that a finite intersection of prime ideals in an
arbitrary ring is always a radical ideal.



A natural appearance of non-radical ideals in geometry

Consider the intersection

V (xy , yz)∩V (y−x−t) = V (xy , yz , y−x−t)

with a moving plane Ht = V (y − x − t).
For t 6= 0 the intersection consists of the
line Lt = V (y , x + t) and the point pt =
V (x , z , y − t). For t = 0 the intersection is
defined by the ideal

(xy , yz , y − x) = (x2, xz , y − x).

This is not a radical ideal.



Continuation of the example

Definition. Let M be an R-module and m ∈ M. The annihilator
of m is the ideal

ann(m) = {a ∈ R | am = 0 ∈ M}.

The annihilator of x ∈ K [x , y , z ]/(x2, xz , y − x) as an
K [x , y , z ]-module is

ann(x) = (x , z , y − x) = (x , y , z).

The corresponding point V (x , y , z) is the limit of the point
pt = (0, t, 0) for t → 0, which lies in the limit line L0 = V (y , z) of
the Lt ’s.



Primary ideals

Definition. A primary ideal q in a ring R is a proper ideal
satisfying

fg ∈ q⇒ f ∈ q or gn ∈ q for some n ∈ N

for all f , g ∈ R.

Proposition. The radical p = rad(q) of a primary ideal q is a
prime ideal. In this situation, q is called a p-primary ideal.

Proof of the proposition. Suppose fg ∈ rad(q) and g /∈ rad(q).
Then a power (fg)n = f ngn ∈ q. Since no power of gn lies in q we
have f n ∈ q by the defining property of primary ideals. Thus
f n ∈ q and f ∈ rad(q).



Primary decomposition

Theorem. Let I ( R be a proper ideal in a noetherian ring R.
Then I is a finite intersection

I = q1 ∩ q2 ∩ . . . ∩ qr .

of primary ideals qj .

Remark. Emanuel Lasker proved this theorem for polynomial rings
in 1905. Emmy Noether gave a simplified proof for arbitrary
noetherian rings in 1921.

Emmy Noether’s proof is another case of noetherian induction.



Existence of the primary decomposition
We proceed in two steps.
Definition. An ideal I statisfying

I = I1 ∩ I2 ⇒ I1 = I or I2 = I

for all ideal I1, I2 ⊂ R is called irreducible.

Step 1. By property 3) in the definition of noetherian rings, the set
of ideals which are not the intersection of finitely many irreducible
ideals is empty by the same argument as in the component
decomposition.
Step 2. Irreducible ideals are primary ideals.
Let I ( be an irreducible ideal, fg ∈ I and f /∈ I . We have to prove
that some power gm ∈ I . Consider the ascending chain of ideals

I : g ⊂ I : g2 ⊂ . . . .

By property 2) in the definition of noetherian rings there exists an
m ∈ N such that

I : gm = I : gm+1.



Existence of the primary decomposition continued
We first claim

I : gm = I : gm+1 =⇒ (I : gm) ∩ ((I + (gm)) = I .

Let a + bgm with a ∈ I and b ∈ R be an arbitrary element of the
intersection. So (a + bgm)gm ∈ I and hence bg2m ∈ I . Writing
bg2m = bgm−1gm+1 the assumption gives bg2m−1 ∈ I . By the
same argument

bgkgm+1 ∈ I ⇒ bgkgm ∈ I

holds for every k ≥ 0. So finally we obtain bgm ∈ I and hence
a + bgm ∈ I . This proves

I ⊂ (I : gm) ∩ ((I + (gm)).

Since the other inclusion holds trivially we arrive at the claim. Now
we use the irreducibility of I . Since f ∈ I : gm but f /∈ I we
conclude

I + (gm) = I , i.e., gm ∈ I .



Minimal primary decompositions

Lemma. If q1 and q2 are p-primary, then q1 ∩ q2 is p-primary as
well.
Proof. If fg ∈ q1 ∩ q2 and g /∈ p, we have to show f ∈ q1 ∩ q2.
This clear because f ∈ qj for all j = 1, 2 by the defining condition
of primary ideals.
A primary decomposition I = q1 ∩ q2 ∩ . . . ∩ qr is called minmal if

1. qj 6⊃
⋂

i 6=j qi for any j ,

2. The prime ideals pj = rad(qj) are pairwise distinct.

By dropping superfluous terms and by collecting primary ideals
with same radical into a single primary ideal one can always pass
from an arbitrary primary decomposition to a minimal one.



Uniqueness of irredundant primary decompositions
Example. The ideal (x2, xy) has many different minimal primary
decomposions:

(x2, xy) = (x) ∩ (x2, y) = (x) ∩ (x2, xy , yn)

are different primary decompositions with associated primes (x)
and (x , y). Thus minimal primary decompositions are not
necessarily unique.

Theorem (First Uniqueness Theorem). The associated primes
{p1, . . . , pr} of a minimal primary decomposition of

I = q1 ∩ q2 ∩ . . . ∩ qr

are uniquely determined by I .
Definition. The minimal elements in the set of associated primes
{p1, . . . , pr} are called isolated primes or minimal primes of I .
The non-isolated primes are called embedded primes. The last
notation is motivated by geometry: pi ⊂ pj implies that V (pj) is
embedded into V (pi ) in case of R = K [x1, . . . , xn].



2nd Uniqueness of theorem
Theorem. The primary ideal qi corresponding to the isolated
primes pi of a minimal primary decomposition

I = q1 ∩ q2 ∩ . . . ∩ qr

are uniquely determined by I .

Corollary. Proper ideals I in a noetherian ring which have no
embedded primes have a unique primary decomposition.

Example. In our example above

(x2, xy) = (x) ∩ (x2, y) = (x) ∩ (x2, xy , yn),

p1 = (x) is an isolated prime and p2 = (x , y) an embedded prime.
The primary ideal q1 = (x) is the same for each minimal
decomposition.


