Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

Overview

Today's topic are fractions. This is an important technique in commutative algebra.

- 1. Multiplicative sets and localization
- 2. Primary decomposition and localization
- 3. Proof of the second uniqueness theorem

Multiplicative sets and fractions

If we want to add or multiply two fractions, we have to be able to multiply the denominators:

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}.$$

Definition. A **multiplicative** subset $U \subset R$ of a ring R is a subset which satisfies

- a) $1 \in U$
- b) $s, t \in U \implies st \in U$.

Example. The most important multiplicative sets are:

- 1. $U = \{f^k \mid k \in \mathbb{N}\}$ powers of an element $f \in R$,
- 2. $U = R \setminus \mathfrak{p}$ the complement of a prime ideal,
- 3. $U = \{r \in R \mid rs \neq 0 \ \forall s \neq 0\}$ the set of non-zero divisors.

If R is an integral domain, then (0) is a prime ideal and the set of non-zero divisors coincides with the complement of (0).

Localization in *U*

Let $U \subset R$ be a multiplicative subset of a ring. We will define a ring of fractions

$$R[U^{-1}] = \{ \frac{a}{s} \mid a \in R \text{ and } s \in U \}$$

as follows: Consider on $R \times U$ the following equivalence relation:

$$(a_1, s_1) \sim (a_2, s_2) \text{ iff } \exists u \in U \text{ such that } u(s_2 a_1 - s_1 a_2) = 0 \in R.$$

The factor u is needed for the transitivity, since R might not be an integral domain.

$$(a_1, s_1) \sim (a_2, s_2)$$
 and $(a_2, s_2) \sim (a_3, s_3)$

$$\Rightarrow \exists u, v \in U \text{ such that } u(s_2a_1 - s_1a_2) = 0 \text{ and } v(s_3a_2 - s_2a_3) = 0$$

$$\Rightarrow 0 = vs_3u(s_2a_1 - s_1a_2) - us_1v(s_3a_2 - s_2a_3) = uvs_2(s_3a_1 - s_1a_3)$$

$$\Rightarrow$$
 $(a_1, s_1) \sim (a_3, s_3)$ since $uvs_2 \in U$.

The fraction $\frac{a}{s} = \{(b, t) \in R \times U \mid (a, s) \sim (b, t)\}$ denotes the equivalence class of (a, s).

Localization in U continued

Then

$$R[U^{-1}] = (R \times U)/\sim$$

defines the localization as a set. It is a subset of $2^{R\times U}$. The usual formulas give $R[U^{-1}]$ the structure of a commutative ring with $1=\frac{1}{1}$. Of course, one has to verify that addition and multiplication are well defined. For example, if $(a_1,s_1)\sim (a_2,s_2)$, then

$$\frac{a_1}{s_1} + \frac{b}{t} = \frac{a_1t + s_1b}{s_1t} = \frac{a_2t + s_2b}{s_2t} = \frac{a_2}{s_2} + \frac{b}{t}$$

because $u(s_2a_1-s_1a_2)=0$ implies $u(s_2t(ta_1+s_1b)-s_1t(a_2t+s_2b))=t^2u(s_2a_1-s_1a_2)=0.$ The map

$$\iota: R \to R[U^{-1}], r \mapsto \frac{r}{1}$$

is a ring homomorphism, which might be not injective:

$$ker(\iota) = \{r \in R \mid \exists u \in U \text{ with } ur = 0\}.$$

Notice that the elements $\iota(u)$ are units in $R[U^{-1}]$: $\frac{u}{1}\frac{1}{u}=1$.

Localization of modules

Let M be an R-module and $U \subset R$ a multiplicative subset. Then we can define similarly $M[U^{-1}]$:

$$(m_1,s_1)\sim (m_2,s_2)$$
 iff $\exists u\in U$ such that $u(s_2m_1-s_1m_2)=0\in R$

is an equivalence relation on $M \times U$ and the set of equivalence classes

$$M[U^{-1}] = \{ \frac{m}{s} \mid m \in M, s \in U \}$$

becomes an $R[U^{-1}]$ -module by

$$\frac{a}{s} \cdot \frac{m}{t} = \frac{am}{st}.$$

Notation

Definition. Let $\mathfrak{p} \subset R$ be a prime ideal and M and R-module.

Then

$$M_{\mathfrak{p}}=M[U^{-1}]$$

where $U = R \setminus \mathfrak{p}$ is called the localization of M in \mathfrak{p} . For $f \in R$ the localization of M in f is

$$M_f = M[U^{-1}]$$

for $U = \{f^k \mid k \in \mathbb{N}\}.$

Example.

$$\mathbb{Z}_2 = \{ \frac{a}{b} \in \mathbb{Q} \mid b \text{ is a power of 2} \}$$

and

$$\mathbb{Z}_{(2)} = \{ \frac{a}{b} \in \mathbb{Q} \mid b \text{ with } 2 \not| b \}$$

quite different.

A local property

Theorem. Let M be an R-module. TFAE

- 1) M = 0.
- 2) $M_{\mathfrak{p}} = 0$ for all prime ideals $\mathfrak{p} \subset R$.
- 3) $M_{\mathfrak{m}}=0$ for all maximal ideals $\mathfrak{m}\subset R$.

Proof. Only the implication 3) \Longrightarrow 1) is non-trivial. Let $M \neq 0$ be a non-zero module and $m \in M$ a non-zero element. Then $I = \operatorname{ann}(m) \subsetneq R$ is a proper ideal since $1 \notin I$. The set of ideals $\mathcal{M} = \{J \text{ ideal in } R \mid I \subset J\}$ contains a maximal element \mathfrak{m} with respect to inclusion. (This is clear for noetherian rings. For more general rings one applies Zorn's Lemma.) The ideal \mathfrak{m} is a maximal ideal of R, and $M_{\mathfrak{m}} \neq 0$ because

$$\frac{m}{1} \neq 0.$$

No element of $R \setminus \mathfrak{m}$ annihilates m because $\mathfrak{m} \supset I = \operatorname{ann}(m)$.

Extended and contracted ideals

Let $\varphi:A\to B$ a ring homomorphism, $\mathfrak a$ an ideal in A and $\mathfrak b$ an ideal in B. Then

$$\mathfrak{a}^e = \mathfrak{a}B = \{\sum_i b_i \varphi(a_i) \mid b_i \in B \text{ and } a_i \in \mathfrak{a}\}$$

is called the **extended** ideal of a, and

$$\mathfrak{b}^c = \varphi^{-1}(\mathfrak{b})$$

is called the **contracted** ideal of b.

Primary decompositions behave well under contractions:

- 1. If \mathfrak{b} is a prime ideal or primary ideal, then \mathfrak{b}^c is prime respectively primary as well.
- 2. $(\mathfrak{b}_1 \cap \mathfrak{b}_2)^c = \mathfrak{b}_1^c \cap \mathfrak{b}_2^c$.
- 3. $(\operatorname{rad}(\mathfrak{b}))^c = \operatorname{rad}(\mathfrak{b}^c)$.

Extended and contracted ideals

The behavior under extension can be complicated:

Example. Consider $\mathbb{Z} \hookrightarrow \mathbb{Z}[\sqrt{-1}]$. Then the prime ideals $(p) \subset \mathbb{Z}$ extend as follows:

- 1) $(2)^e = (1 + \sqrt{-1})^2$ is a square of a prime ideal.
- 2) If $p \equiv 1 \mod 4$, then $(p)^e$ is the product of two distinct prime ideals, for example $(5)^e = (2 + \sqrt{-1})(2 \sqrt{-1})$.
- 3) If $p \equiv 3 \mod 4$, then $(p)^e$ is a prime ideal.

Only 2) is a non-trival statement. It is equivalent to a theorem of Fermat, which says that a prime $p \equiv 1 \mod 4$ is sum of two squares: $(5 = 2^2 + 1^2, 13 = 3^2 + 2^2, \ldots, 97 = 9^2 + 4^2,$ etc.)

Extended and contracted ideals

Proposition. For a ring homomorphism $A \rightarrow B$ and notation as before we have

- 1. $\mathfrak{a}^{ec} \supset \mathfrak{a}$ and $\mathfrak{b}^{ce} \subset \mathfrak{b}$.
- 2. $\mathfrak{a}^e = \mathfrak{a}^{ece}$ and $\mathfrak{b}^{cec} = \mathfrak{b}^c$.
- 3. The set of contacted ideals is $C = \{\mathfrak{a} \mid \mathfrak{a} = \mathfrak{a}^{ec}\}$, and the set of extended ideal is $E = \{\mathfrak{b} \mid \mathfrak{b} = \mathfrak{b}^{ce}\}$. These sets are in bijection via $\mathfrak{a} \mapsto \mathfrak{a}^e$ and $\mathfrak{b} \mapsto \mathfrak{b}^c$.

Proof. 1) is clear. 2) follows from 1): $\mathfrak{a}^{ec} \supset \mathfrak{a}$ implies $\mathfrak{a}^{ece} \supset \mathfrak{a}^e$, and apply $\mathfrak{b}^{ce} \subset \mathfrak{b}$ to $\mathfrak{b} = \mathfrak{a}^e$ gives the other inclusion. 3) follows with 2).

The situation is better for localizations maps

$$\iota:R\to R[U^{-1}].$$

Passing from ring to a localization makes things easier at least from a theoretical point of view. For example the ideal theory of $R[U^{-1}]$ is a simplified version of the ideal theory of R.

Ideal theory of localizations

Theorem. Let $U \subset R$ be a multiplicative subset of a ring and let $\iota : R \to R[U^{-1}], r \mapsto r/1$ denote the natural homomorphism.

1. If I is an ideal in R, then

$$I^{\operatorname{ec}} = \iota^{-1}(IR[U^{-1}] = \{a \in R \mid \exists u \in U \text{ with } ua \in I\}.$$

2. If J is an ideal in $R[U^{-1}]$, then

$$J^{ce} = \iota^{-1}(J)R[U^{-1}] = J$$

Thus the map $J \mapsto \iota^{-1}(J)$ is an injection of the set ideals of $R[U^{-1}]$ into the set of ideals of R.

- 3. If R is noetherian, then $R[U^{-1}]$ is noetherian.
- 4. ι^{-1} induces a bijection between the set of prime ideals of $R[U^{-1}]$ and the set of prime ideals \mathfrak{p} of R with $U \cap \mathfrak{p} = \emptyset$.
- 5. ι^{-1} induces a bijection between the set of primary ideals of $R[U^{-1}]$ and the set of prime ideals \mathfrak{q} of R with $U \cap \mathfrak{q} = \emptyset$.

Proof

Part 1: If $a \in R$, then $a \in \iota^{-1}(IR[U^{-1}]) \iff a/1 \in IR[U^{-1}] \iff ua \in I$ for some $u \in U$. Part 2: Let $b/u \in R[U^{-1}]$. Then $b/u \in J \iff b/1 \in J \iff b \in \iota^{-1}(J) \iff b/u \in \iota^{-1}(J)R[U^{-1}]$.

Part 3 follows from part 2.

Part 5 and 4: Let \mathfrak{q} be a primary ideal of $R[U^{-1}]$. Then $\mathfrak{q}^c = \iota^{-1}(\mathfrak{q})$ is a primary ideal of R which does not intersect U because \mathfrak{q} contains no units.

Conversely, let \mathfrak{q} be a primary ideal in R with $\mathfrak{q} \cap U = \emptyset$. Then $\mathfrak{q}^e = \mathfrak{q} R[U^{-1}]$ is a proper ideal because $\mathfrak{q}^{ec} = \iota^{-1}(\mathfrak{q}^e) = \mathfrak{q}$ follows from part 1: $ua \in \mathfrak{q}$ and $u^n \notin \mathfrak{q}$ implies $a \in \mathfrak{q}$ since \mathfrak{q} is primary. It remains to prove that \mathfrak{q}^e is a primary ideal. Suppose $a/u \cdot b/v \in \mathfrak{q}^e$, then $wab \in \mathfrak{q}$ for some $w \in U$ by part 1. Hence $wa \in \mathfrak{q}$ or $b^n \in \mathfrak{q}$ for some n since \mathfrak{q} is primary. It follows $a/u \in \mathfrak{q}^e$ or $(b/v)^n \in \mathfrak{q}^e$ because wu and v are units in $R[U^{-1}]$. In case of prime ideals we have n=1 in the argument above.

Primary decomposition and localization

Corollary. Let U be a multiplicative subset of a ring R and

$$I=\mathfrak{q}_1\cap\ldots\cap\mathfrak{q}_r$$

a primary decomposition of an ideal $I \subset R$. Then

$$I^e = \bigcap_{\mathfrak{q}_i:\mathfrak{q}_i\cap U=\emptyset}\mathfrak{q}_i^e$$

is a primary decomposition of the extended ideal $I^{\mathsf{e}} \subset \mathsf{R}[\mathsf{U}^{-1}]$ and

$$I^{ec} = \bigcap_{\mathfrak{q}_i:\mathfrak{q}_i\cap U=\emptyset} \mathfrak{q}_{i.}$$

In particular the last intersection does not depend on the choice of the primary decomposition.

Proof

We need one more Lemma.

Lemma. Let $\iota: R \to R[U^{-1}]$ be a localization, and let I and J be ideals in R. Then

$$I^e \cap J^e = (I \cap J)^e.$$

Proof of the Lemma. $I^e \cap J^e \supset (I \cap J)^e$ is clear. Suppose

$$\frac{a}{u} = \frac{b}{v} \in I^e \cap J^e$$
 with $a \in I$ and $b \in J$

Then there exists a $w \in U$ such that $wva = wub \in I \cap J$. Hence

$$\frac{a}{u} = \frac{wva}{uwv} \in (I \cap J)^e.$$

Primary ideals \mathfrak{q}_j with $\mathfrak{q}_j \cap U \neq \emptyset$ extend to $\mathfrak{q}_j^e = (1)$, since elements of U become units in $R[U^{-1}]$. Thus these can be dropped in the intersection, and

$$I^e = \bigcap_{\mathfrak{q}: \mathfrak{q}: \cap U = \emptyset} \mathfrak{q}_i^e$$

2nd uniqueness theorem

The rest of the theorem clear, because contraction commutes with intersections and $\mathfrak{q}_i^{ec} = \mathfrak{q}_i$ for primary ideals with $\mathfrak{q}_i \cap U \neq \emptyset$.

Corollary. Let \mathfrak{p}_i be a minimal associated prime of a minimal primary decomposition

$$I = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_r$$
.

Then q_i is uniquely determined by I.

Proof. Consider the localization in \mathfrak{p}_i , i.e., with respect to $U = R \setminus \mathfrak{p}_i$. Since \mathfrak{p}_i is minimal all other associated primes $\mathfrak{p}_j = \operatorname{rad}(\mathfrak{q}_j)$ intersect U:

$$(R \setminus \mathfrak{p}_i) \cap \mathfrak{p}_j = \emptyset \iff \mathfrak{p}_j \subset \mathfrak{p}_i$$

and \mathfrak{p}_j would be smaller than \mathfrak{p}_i . Since U is multiplicative $\mathfrak{p}_i \cap U \neq \emptyset \iff \mathfrak{q}_i \cap U \neq \emptyset$ holds. Thus

$$I^{ec} = \mathfrak{q}_i$$

holds by the theorem.

Examples

1. $R = \mathbb{Z}$. The ideals of \mathbb{Z} are principal and

$$(n) = (p_1^{e_1}) \cap \ldots \cap (p_r^{e_r})$$

is the primary decomposition if

$$n=p_1^{e_1}\cdot\ldots\cdot p_r^{e_r}$$

is the prime factorization.

2. The polynomial ring $K[x_1, ..., x_n]$ for any field K is factorial. As above the primary decomposition of an principal ideal (f) corresponds factorizations: If

$$f = uf_1^{e_1} \cdot \ldots \cdot f_r^{e_r}$$

with $u \in K^*$ a unit and f_j irreduzible then $(f) = (f_1^{e_1}) \cap \ldots \cap (f_r^{e_r})$ is the primary decomposition.