Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

Overview

Today topic are associated primes of modules. This concept allows to prove that over a noetherian ring R any finitely generated R-module M is built from modules of the type R / \mathfrak{p}_{j} for various primes \mathfrak{p}_{j}.

1. Associated primes
2. The $1^{\text {st }}$ uniqueness theorem
3. Filtration with prime ideals
4. Exactness of localization

Associated primes

Definition. Let M be an R-module. An associated prime of M is a prime ideal \mathfrak{p} of the form

$$
\mathfrak{p}=\operatorname{ann}(m)=\{r \in R \mid r m=0\}
$$

for some non-zero element $m \in M$.
Proposition. The maximal elements with respect to inclusion of the set

$$
\mathcal{M}=\{\operatorname{ann}(m) \mid m \in M, m \neq 0\}
$$

are associated primes of M.
Proof. Let ann $(m) \in \mathcal{M}$ be maximal and $f, g \in R$ elements with

$$
f g \in \operatorname{ann}(m)
$$

Suppose $g \notin \operatorname{ann}(m)$. Then $g m \neq 0$ and $\operatorname{ann}(m) \subset \operatorname{ann}(g m)$. Since $\operatorname{ann}(m) \in \mathcal{M}$ is maximal we have ann $(m)=\operatorname{ann}(g m)$ and $f \in \operatorname{ann}(g m)=\operatorname{ann}(m)$. Thus $\operatorname{ann}(m)$ is a prime ideal.

$\operatorname{Ass}(M)$

Definition. Let M be an R-module. Then

$$
\operatorname{Ass}(M)=\{\mathfrak{p} \mid \mathfrak{p} \text { is an associated prime of } M\}
$$

denotes the set of associated primes of M. Over a noetherian ring $\operatorname{Ass}(M)$ is non-empty, since the set \mathcal{M} above is non-empty.
Definition. A short exact sequence of R-modules is a sequence

$$
0 \longrightarrow M^{\prime} \xrightarrow{\psi} M \xrightarrow{\varphi} M^{\prime \prime} \longrightarrow 0
$$

which consists of an injective R-module homomorphism ψ and a surjective R-module homomorphism φ such that

$$
\operatorname{ker}(\varphi)=\operatorname{im}(\psi)
$$

If we identify M^{\prime} with a submodule of M via ψ, then $M^{\prime \prime}$ is isomorphic to the quotient module M / M^{\prime} :

$$
M^{\prime \prime} \cong M / \operatorname{ker}(\varphi)=M / M^{\prime}
$$

Ass (M) in short exact sequences

Proposition. Let

$$
0 \longrightarrow M^{\prime} \xrightarrow{\psi} M \xrightarrow{\varphi} M^{\prime \prime} \longrightarrow 0
$$

be a short exact sequence of R-modules. Then

$$
\operatorname{Ass}\left(M^{\prime}\right) \subset \operatorname{Ass}(M) \subset \operatorname{Ass}\left(M^{\prime}\right) \cup \operatorname{Ass}\left(M^{\prime \prime}\right)
$$

If $M=M^{\prime} \oplus M^{\prime \prime}$, then $\operatorname{Ass}(M)=\operatorname{Ass}\left(M^{\prime}\right) \cup \operatorname{Ass}\left(M^{\prime \prime}\right)$.
Proof. The first inclusion is clear. For the second consider an $\mathfrak{p} \in \operatorname{Ass}(M) \backslash \operatorname{Ass}\left(M^{\prime}\right)$ and an element $m \in M$ such that $\mathfrak{p}=\operatorname{ann}(m)$. Then

$$
R m \cong R / \mathfrak{p}
$$

Since \mathfrak{p} is prime, every non-zero element of $g m \in R m$ has annihilator $\operatorname{ann}(g m)=\mathfrak{p}$ as well: $f \in \operatorname{ann}(g m)=0 \Rightarrow$ $f g \in \operatorname{ann}(m)=\mathfrak{p} \Rightarrow f \in \mathfrak{p}$ since $g \notin \operatorname{ann}(m)$.
Since $\mathfrak{p} \notin \operatorname{Ass}\left(M^{\prime}\right)$ it follows that $R m \cap M^{\prime}=0$.
Thus $R m$ is isomorphic to its image $\varphi(R m)$ in $M^{\prime \prime}$ and

$$
\mathfrak{p}=\operatorname{ann}(\varphi(m)) \in \operatorname{Ass}\left(M^{\prime \prime}\right)
$$

Associated primes of a direct sum

Corollary. $\operatorname{Ass}\left(M^{\prime} \oplus M^{\prime \prime}\right)=\operatorname{Ass}\left(M^{\prime}\right) \cup \operatorname{Ass}\left(M^{\prime \prime}\right)$
Proof. For $M=M^{\prime} \oplus M^{\prime \prime}$ we have two short exact sequences

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

and

$$
0 \longrightarrow M^{\prime \prime} \longrightarrow M \longrightarrow M^{\prime} \longrightarrow 0 .
$$

Hence

$$
\operatorname{Ass}\left(M^{\prime}\right) \cup \operatorname{Ass}\left(M^{\prime \prime}\right) \subset \operatorname{Ass}\left(M^{\prime} \oplus M^{\prime \prime}\right) \subset \operatorname{Ass}\left(M^{\prime}\right) \cup \operatorname{Ass}\left(M^{\prime \prime}\right)
$$

follows from the proposition.

$1^{\text {st }}$ uniqueness theorem

Theorem. Let $I=\mathfrak{q}_{1} \cap \ldots \cap \mathfrak{q}_{r}$ be a minimal primary decompostion of an ideal $I \subset R$. Then the associated primes of R / I as an R-module is precisely the set

$$
\operatorname{Ass}(R / I)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}\right\}
$$

where $\mathfrak{p}_{i}=\operatorname{rad}\left(\mathfrak{q}_{i}\right)$.
Proof. We first establish the special case when $I=\mathfrak{q}$ is a \mathfrak{p}-primary ideal:

$$
\operatorname{Ass}(R / \mathfrak{q})=\{\mathfrak{p}\} .
$$

Indeed suppose $g \in \operatorname{ann}(\bar{f})=\mathfrak{p}^{\prime}$ lies in an associated prime. Then $g f \in \mathfrak{q}$. Since $f \notin \mathfrak{q}$ we obtain $g^{n} \in \mathfrak{q}$, i.e., $\mathfrak{p}^{\prime} \subset \operatorname{rad}(\mathfrak{q})$. Since $\mathfrak{q} \subset \mathfrak{p}^{\prime}$ we deduce

$$
\operatorname{rad}(\mathfrak{q}) \subset \operatorname{rad}\left(\mathfrak{p}^{\prime}\right)=\mathfrak{p}^{\prime} \subset \operatorname{rad}(\mathfrak{q})
$$

and equality holds.

Continuation of the proof

Now consider the R-module homomorphism

$$
\psi: R \rightarrow R / \mathfrak{q}_{1} \oplus \ldots \oplus R / \mathfrak{q}_{r}, f \mapsto\left(f+\mathfrak{q}_{1}, \ldots, f+\mathfrak{q}_{r}\right)
$$

Since $\operatorname{ker}(\psi)=I$ we obtain an inclusion

$$
R / I \hookrightarrow R / \mathfrak{q}_{1} \oplus \ldots \oplus R / \mathfrak{q}_{r} .
$$

Hence we obtain $\operatorname{Ass}(R / I) \subset\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}\right\}$ from the propostion. To see equality we use that the primary decomposition is irredundant. Thus for each i

$$
\bigcap_{j \neq i} \mathfrak{q}_{j} \supsetneq \bigcap_{j=1}^{r} \mathfrak{q}_{j} .
$$

Consider an element f_{i} in the complement and the residue class $\bar{f}_{i} \in R / I . \psi$ maps the submodule $R \bar{f} \subset R / I$ into the summand R / \mathfrak{q}_{i}. Thus

$$
\operatorname{Ass}(R \bar{f}) \subset \operatorname{Ass}\left(R / \mathfrak{q}_{i}\right)=\left\{\mathfrak{p}_{i}\right\}
$$

and equality holds. Thus $\left\{\mathfrak{p}_{i}\right\}=\operatorname{Ass}(R \bar{f}) \subset \operatorname{Ass}(R / I)$.

Associated primes of an ideal

Definition. If $I \subset R$ is an ideal. Then by the associated primes of I we mean $\operatorname{Ass}(R / I)$ where we regard R / I as an R-module.

Notice that $\operatorname{Ass}(I)$ where we regard I as an R-module is not so interesting. For example if R is an integral domain, then

$$
\operatorname{Ass}(I)=\operatorname{Ass}(R)=\{(0)\}
$$

Thus the associated primes of I are precisely the prime ideals which occur in a minimal primary decomposition of I.

Filtration with prime ideals

Theorem. Let M be a finitely generated non-zero module over a noetherian ring R. Then there exists a filtration

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M_{n}=M
$$

such that all quotients

$$
M_{i} / M_{i-1} \cong R / \mathfrak{p}_{i}
$$

for some prime ideals \mathfrak{p}_{i} of R.
Proof. Since R is noetherian the set of proper ideals

$$
\mathcal{M}=\{\operatorname{ann}(m) \mid m \in M, m \neq 0\}
$$

is not empty, and a maximal element of this set is a prime ideal $\mathfrak{p}_{1}=\operatorname{ann}\left(m_{1}\right)$ such

$$
R m_{1} \cong R / \mathfrak{p}_{1}
$$

We take $M_{1}=R m_{1}$.

Filtration with prime ideals

Suppose $M_{0} \subset \ldots \subset M_{k-1}$ are already constructed. If $M_{k-1} \subsetneq M$, then we consider an associated prime $\mathfrak{p}_{k}=\operatorname{ann}\left(\bar{m}_{k}\right) \in \operatorname{Ass}\left(M / M_{k-1}\right)$ and define

$$
M_{k}=\pi^{-1}\left(R \bar{m}_{k}\right)=R m_{k}+M_{k-1}
$$

where $\pi: M \rightarrow M / M_{k-1}$ is the natural projection and $\pi\left(m_{k}\right)=\bar{m}_{k}$.

$$
M_{k} / M_{k-1} \cong R m_{k} / R m_{k} \cap M_{k-1} \cong R m_{k} / \mathfrak{p}_{k} m_{k} \cong R \bar{m}_{k} \cong R / \mathfrak{p}_{k}
$$

The process stops with an $M_{n}=M$ because any ascending chain of submodules becomes stationary, because M is noetherian.

Filtration with prime ideals

Proposition. Let M be an R-module with a filtration

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M_{n}=M
$$

such that all quotients $M_{i} / M_{i-1} \cong R / \mathfrak{p}_{i}$ for some prime ideals \mathfrak{p}_{i} of R. Then

$$
\operatorname{Ass}(M) \subset\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}
$$

Functoriality of localization

Let $\varphi: M \rightarrow N$ be an R-module homomorphism. Then

$$
\varphi\left[U^{-1}\right]: M\left[U^{-1}\right] \rightarrow N\left[U^{-1}\right]
$$

defined by

$$
\varphi\left[U^{-1}\right]\left(\frac{m}{s}\right)=\frac{\varphi(m)}{s}
$$

is a well-defined $R\left[U^{-1}\right]$-module homomorphism. If
$M^{\prime} \xrightarrow{\psi} M \xrightarrow{\varphi} M^{\prime \prime}$ are two composable morphisms with $\varphi \circ \psi=0$, then the same holds for the localizations. More is true.
Definition. A sequence

$$
M^{\prime} \xrightarrow{\psi} M \xrightarrow{\varphi} M^{\prime \prime}
$$

of R-module homomorphism is exact at M if $\operatorname{ker}(\varphi)=\operatorname{im}(\psi)$.

Exactness of localization

Proposition. Let $M^{\prime} \xrightarrow{\psi} M \xrightarrow{\varphi} M^{\prime \prime}$ be exact at M. Let U be a multiplicative subset. Then the induced sequence

$$
M^{\prime}\left[U^{-1}\right] \xrightarrow{\psi\left[U^{-1}\right]} M\left[U^{-1}\right] \xrightarrow{\varphi\left[U^{-1}\right]} M^{\prime \prime}\left[U^{-1}\right]
$$

is exact at $M\left[U^{-1}\right]$.
Proof. The inclusion $\operatorname{im}\left(\psi\left[U^{-1}\right]\right) \subset \operatorname{ker}\left(\varphi\left[U^{-1}\right]\right)$ is clear because $\varphi \circ \psi=0$. To prove the converse inclusion let $m / s \in \operatorname{ker}\left(\varphi\left[U^{-1}\right]\right)$. Then $\varphi(m) / s=0 \in M^{\prime \prime}\left[U^{-1}\right]$, i.e., $\exists u \in U$ such that $u \varphi(m)=0 \in M^{\prime \prime}$. But $u \varphi(m)=\varphi(u m)$ since φ is R-linear. Hence $u m \in \operatorname{ker}(\varphi)=\operatorname{im}(\psi)$. So there exists $m^{\prime} \in M^{\prime}$ such that $\psi\left(m^{\prime}\right)=u m$. Thus

$$
\frac{m^{\prime}}{u s} \mapsto \frac{u m}{u s}=\frac{m}{s}
$$

Localization commutes with the formation of finite sums, finite intersections and quotients

If $N \subset M$ is a submodule, then by the proposition applied to the exact sequence

$$
0 \rightarrow N \rightarrow M
$$

we may regard $N\left[U^{-1}\right]$ as a submodule of $M\left[U^{-1}\right]$.
Corollary. Let N, P be submodules of M. Then

1) $(N+P)\left[U^{-1}\right]=N\left[U^{-1}\right]+P\left[U^{-1}\right]$.
2) $(N \cap P)\left[U^{-1}\right]=N\left[U^{-1}\right] \cap P\left[U^{-1}\right]$.
3) $(M / N)\left[U^{-1}\right] \cong M\left[U^{-1}\right] / N\left[U^{-1}\right]$.

Proof. 1) follows from $n / s+p / t=(t n+s p) / s t$.
2): If $n / s=p / t$, then $\exists u \in U$ with $u t n=u s p \in N \cap P$.
3) follows from the proposition applied to the exact sequence

$$
0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0
$$

Further local properties

Theorem. Let $\varphi: M \rightarrow N$ be an R-module homomorphism.

TFAE

1) φ is injective.
2) $\varphi_{\mathfrak{p}}$ is injective for all prime ideals \mathfrak{p} of R.
3) $\varphi_{\mathfrak{m}}$ is injective for all maximal ideals \mathfrak{m} of R.

A similar result holds for 'injective' replaced by 'surjective'.
Proof. Consider the sequence

$$
0 \rightarrow \operatorname{ker}(\varphi) \rightarrow M \rightarrow N
$$

which is exact at M and $\operatorname{ker}(\varphi)$. By the exactness of localization

$$
\operatorname{ker}\left(\varphi_{\mathfrak{p}}\right)=(\operatorname{ker}(\varphi))_{\mathfrak{p}} .
$$

Thus the result follows because being the zero-module is a local property. For the second version we consider the sequence

$$
M \rightarrow N \rightarrow \operatorname{coker}(\varphi) \rightarrow 0
$$

