Computer Algebra and Gröbner Bases

Winterterm 2020/21

All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/
Sheet 1
12. November 2020

Exercise 1. Let K be an infinite field and $f \in K\left[x_{1}, \ldots, x_{n}\right]$ a non-zero polynomial. Show that there exists a point $a \in \mathbb{A}^{n}(K)$ such that $f(a) \neq 0$.

Exercise 2. Let $K[x]$ a polynomial ring in one variable over a field. Prove that $K[x]$ is a principal ideal domain, that is, every ideal $I \subset K[x]$ is generated by a single polynomial.

Exercise 3. Let $M, N \subset L$ be two submodules of an R-module L. Prove:
(a) $M+N=\{n+m \in L \mid m \in M$ and $n \in N\}$ and $M \cap N$ are submodules of L.
(b) $(M+N) / M \cong N /(N \cap M)$.

Exercise 4. Let $M \subset N \subset L$ be a chain of submodules of an R-module L. Prove:
(a) N / M is a submodule of L / M.
(b) $(L / M) /(N / M) \cong L / N$.

