Computer Algebra and Gröbner Bases

Winterterm 2020/21

All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/
Sheet 2
19. November 2020

Exercise 1. Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Prove
$V(I) \subset \mathbb{A}^{n}$ is finite $\Longleftrightarrow K\left[x_{1}, \ldots, x_{n}\right] / I$ is a finite dimensional K-vector space.

Exercise 2. Consider the ideal $I=(x y(x+y)+1) \subset \mathbb{F}_{2}[x, y]$. Determine coordinates in which I satisfies the extra hypothesis of the projection theorem. Show that the extra hypothesis cannot be achieved by means of a linear change of coordinates.

Exercise 3. A binomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial with has exactly two terms

$$
f=a x^{\alpha}-b x^{\beta} .
$$

A binomial ideal is an ideal generated by binomials and monomials. Prove:
Binomial ideals have a Gröbner basis consisting of binomials and monomials.
Exercise 4. (Key property of $>_{\text {lex }}$.)
(1) Let $f \in K\left[x_{1}, \ldots, x_{n}\right]$ and $1 \leq j \leq n-1$.

$$
\mathrm{Lt}_{\operatorname{lex}}(f) \in K\left[x_{j+1}, \ldots, x_{n}\right] \Longleftrightarrow f \in K\left[x_{j+1}, \ldots, x_{n}\right]
$$

(2) Let f_{1}, \ldots, f_{r} be a Gröbner basis of $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ with respect to $>_{\text {lex }}$. Then

$$
\left\{f_{s} \mid \operatorname{Lt}_{\mathrm{lex}}\left(f_{s}\right) \in K\left[x_{j+1}, \ldots, x_{n}\right]\right\}
$$

is a Gröbner basis of $I_{j}=I \cap K\left[x_{j+1}, \ldots, x_{n}\right]$.

