

Computer Algebra and Gröbner Bases

Winterterm 2020/21

All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/

Sheet 2

19. November 2020

Exercise 1. Let $I \subset K[x_1, \ldots, x_n]$ be an ideal. Prove $V(I) \subset \mathbb{A}^n$ is finite $\iff K[x_1, \ldots, x_n]/I$ is a finite dimensional K-vector space.

Exercise 2. Consider the ideal $I = (xy(x + y) + 1) \subset \mathbb{F}_2[x, y]$. Determine coordinates in which I satisfies the extra hypothesis of the projection theorem. Show that the extra hypothesis cannot be achieved by means of a linear change of coordinates.

Exercise 3. A binomial $f \in K[x_1, \ldots, x_n]$ is a polynomial with has exactly two terms $f = ax^{\alpha} - bx^{\beta}$.

A binomial ideal is an ideal generated by binomials and monomials. Prove: Binomial ideals have a Gröbner basis consisting of binomials and monomials.

Exercise 4. (Key property of $>_{\text{lex}}$.) (1) Let $f \in K[x_1, \ldots, x_n]$ and $1 \le j \le n - 1$. Lt_{lex} $(f) \in K[x_{j+1}, \ldots, x_n] \iff f \in K[x_{j+1}, \ldots, x_n]$ (2) Let f_1, \ldots, f_r be a Gröbner basis of $I \subset K[x_1, \ldots, x_n]$ with respect to $>_{\text{lex}}$. Then $\{f_s \mid \text{Lt}_{\text{lex}}(f_s) \in K[x_{j+1}, \ldots, x_n]\}$

is a Gröbner basis of $I_j = I \cap K[x_{j+1}, \ldots, x_n]$.