

Computer Algebra and Gröbner Bases

Winterterm 2020/21

All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/

Sheet 3

26. November 2020

Exercise 1. Prove that the algebraic sets $V(y-x^2)$ and V(xy-1) in \mathbb{A}^2 are not isomorphic.

Exercise 2. An R-module M is called noetherian, if it satisfies analogous equivalent condition for submodules instead of ideals. Prove:

(1) Let

$$0 \longrightarrow M' \xrightarrow{\psi} M \xrightarrow{\varphi} M'' \to 0$$

be a short exact sequence of *R*-modules, i.e., the homomorphism ψ is injective, the homomorphism φ is surjective and ker $\varphi = \operatorname{im} \psi$.

Then M is noetherian iff M' and M'' are noetherian.

(2) An R-module M over a noetherian ring R is noetherian iff M is finitely generated.

Exercise 3. Let R be a noetherian ring, let \mathfrak{m} be a maximal ideal of R, and let I be any ideal of R. Show that the following are equivalent:

(1) I is **m**-primary.

(2) $\operatorname{rad}(I) = \mathfrak{m}.$

(3) $\mathfrak{m} \supset I \supset \mathfrak{m}^k$ for some $k \ge 1$.

Exercise 4.

- (1) When is a monomial ideal a prime ideal?
- (2) Characterize monomial primary ideals.
- (3) Consider the monomial ideal $I = (xy, xz, yz) \subset \mathbb{Q}[x, y, z]$. Compute a primary decomposition of I and I^2 .