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Exercise 1. Consider the plane curves defined by

y2 = (1− x2)3, y2 = x4 − x6, y3 − 3x2y = (x2 + y2)2, y2 = x2 − x4

Their real points are one of the following:

Who is who?

Exercise 2. Implement the computer algebra system Macaulay2
https://faculty.math.illinois.edu/Macaulay2/
on your machine.

Exercise 3. Describe the free resolution of k ∼= k[x1, . . . , xn]/(x1, . . . , xn) as an K[x1, . . . , xn]-
module.

https://faculty.math.illinois.edu/Macaulay2/


Exercise 4.

(1) Let

f = a0x
d + a1x
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g = b0x
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d−1 + . . . + be

be two polynomials in K[x] of degree d and e. Consider the (d+e)×(d+e) Sylvester
matrix
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There e columns with entries the ai’s and d columns with entries bj’s. Prove f and
g have a common root if and only if the resultant

Res(f, g) = det Syl(f, g) = 0

of f and g vanishes.
(2) With notation similar as in Exercise 3, suppose that ai and bj are independent

variables of degree i and j respectively. Prove that the resultant

Res(f, g) ∈ Z[ai, bj]

is a homogeneous polynomial of degree d · e.


