Computer Algebra and Gröbner Bases

Winterterm 2020/21

All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/

Exercise 1. Consider the plane curves defined by

$$
y^{2}=\left(1-x^{2}\right)^{3}, \quad y^{2}=x^{4}-x^{6}, \quad y^{3}-3 x^{2} y=\left(x^{2}+y^{2}\right)^{2}, \quad y^{2}=x^{2}-x^{4}
$$

Their real points are one of the following:

Who is who?
Exercise 2. Implement the computer algebra system Macaulay2
https://faculty.math.illinois.edu/Macaulay2/
on your machine.
Exercise 3. Describe the free resolution of $k \cong k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}, \ldots, x_{n}\right)$ as an $K\left[x_{1}, \ldots, x_{n}\right]$ module.

Exercise 4.

(1) Let

$$
\begin{aligned}
& f=a_{0} x^{d}+a_{1} x^{d-1}+\ldots+a_{d} \\
& g=b_{0} x^{d}+b_{1} x^{d-1}+\ldots+b_{e}
\end{aligned}
$$

be two polynomials in $K[x]$ of degree d and e. Consider the $(d+e) \times(d+e)$ Sylvester matrix

$$
\operatorname{Syl}(f, g)=\left(\begin{array}{cccccccc}
a_{0} & 0 & \cdots & 0 & b_{0} & 0 & \cdots & 0 \\
a_{1} & a_{0} & & \vdots & b_{1} & b_{0} & & \vdots \\
\vdots & a_{1} & \ddots & \vdots & \vdots & b_{1} & \ddots & \vdots \\
\vdots & \vdots & \ddots & a_{0} & \vdots & \vdots & \ddots & b_{0} \\
a_{d} & & & a_{1} & b_{e} & & & b_{1} \\
0 & a_{d} & & \vdots & 0 & b_{e} & & \vdots \\
\vdots & & \ddots & \vdots & \vdots & & \ddots & \vdots \\
0 & 0 & \cdots & a_{d} & 0 & 0 & \cdots & b_{e}
\end{array}\right)
$$

There e columns with entries the a_{i} 's and d columns with entries b_{j} 's. Prove f and g have a common root if and only if the resultant

$$
\operatorname{Res}(f, g)=\operatorname{det} \operatorname{Syl}(f, g)=0
$$

of f and g vanishes.
(2) With notation similar as in Exercise 3, suppose that a_{i} and b_{j} are independent variables of degree i and j respectively. Prove that the resultant

$$
\operatorname{Res}(f, g) \in \mathbb{Z}\left[a_{i}, b_{j}\right]
$$

is a homogeneous polynomial of degree $d \cdot e$.

