Computer Algebra and Gröbner Bases

Winterterm 2020/21

All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/
Sheet 8
14. January 2021

Exercise 1. Let $>$ be monomial order and let $M \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a finite set of monomials. Prove that there exiss a weight order $>_{w}$ (with \mathbb{Q}-linearly independent weights) which induces the same order on the monomials of M as $>$.
Hint: Consider the convex hull C of the set

$$
\left\{\alpha-\beta \mid x^{\alpha}, x^{\beta} \in M \text { with } x^{\alpha} \geq x^{\beta}\right\} \subset \mathbb{R}^{n}
$$

and prove that $0 \in C$ is a vertex of C, i.e., 0 is not a linear combination of other points in C with strictly positive coefficients.

Exercise 2. Prove that the Segre product $\mathbb{P}^{n} \times \mathbb{P}^{m} \subset \mathbb{P}^{N}$ with $N=(n+1)(m+1)-1$ has dimension $\operatorname{dim} \mathbb{P}^{n} \times \mathbb{P}^{m}=n+m$ and degree $\operatorname{deg} \mathbb{P}^{n} \times \mathbb{P}^{m}=\binom{n+m}{n}$.
Exercise 3. Give examples of two smooth plane conics which intersect in points with multiplicities
(a) $1,1,1,1$
(b) $2,1,1$
(c) 2,2
(d) 3,1
(e) 4

Exercise 4. Use Macaulay2 to compute
(a) a rational parametrization of the plane quartic curve $V(f) \subset \mathbb{A}^{2}$ defined by $f=$ $-2 x^{4}-2 x^{3} y+x^{2} y^{2}+3 x y^{3}+4 y^{4}+4 x^{3}+x^{2} y-4 x y^{2}-8 y^{3}-2 x^{2}+x y+4 y^{2}$. Hint: $V(f)$ contains the points with coordinates $(0,0),(1,0),(0,1)$ and $(1,1)$.

(b) the equation of the image C of

$$
\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2},\left[t_{0}: t_{1}\right] \mapsto\left[t_{0}^{4}: t_{0}^{3} t_{1}-t_{0} t_{1}^{3}: t_{1}^{4}\right] .
$$

Where are the singular points of C ?

