Computer Algebra and Gröbner Bases

Winterterm 2020/21

All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/
Sheet 9
21. January 2021

Exercise 1.

Let $\varphi: X \rightarrow Y$ be a projective morphism. Prove that
1)

$$
A_{r}=\left\{q \in Y \mid \operatorname{dim} X_{q} \geq r\right\} \subset Y
$$

is a Zariski-closed subset of Y.
2) Suppose that X and Y are varieties and that φ is surjective. Prove that

$$
\operatorname{dim} A_{r}+r<\operatorname{dim} X
$$

for r with $r>\operatorname{dim} X-\operatorname{dim} Y$.
Exercise 2. Consider the algebraic set $S(e, d) \subset \mathbb{P}^{d+e-1}$ for $d, e \geq 1$ defined by the 2×2 minors of the matrix

$$
\left(\begin{array}{cccccccc}
x_{0} & x_{1} & \ldots & x_{d-1} & y_{0} & y_{1} & \ldots & y_{e-1} \\
x_{1} & x_{2} & \ldots & x_{d} & y_{1} & y_{2} & \ldots & y_{e}
\end{array}\right)
$$

where $x_{0} \ldots y_{e}$ are the homogeneous coordinates on \mathbb{P}^{d+e+1}.

1) Prove that there exists a morphism $\pi: S(d, e) \rightarrow \mathbb{P}^{1}$ whose fibers are lines.
2) Let $\phi_{1}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}=V\left(y_{0}, \ldots, y_{e}\right)$ and $\phi_{2}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}=V\left(x_{0}, \ldots, x_{n}\right)$ be the parametrisation of the rational normal curve of degree d and e in disjoint linear subspaces $\mathbb{P}^{d} \cup \mathbb{P}^{e} \subset \mathbb{P}^{d+e+1}$. Prove

$$
S(e, d)=\bigcup_{p \in \mathbb{P}^{1}} \overline{\phi_{1}(p) \phi_{2}(p)}
$$

where $\overline{\phi_{1}(p) \phi_{2}(p)}$ denotes the line joining $\phi_{1}(p)$ and $\phi_{2}(p)$.
Exercise 3. Let $L_{1} \cup L_{2} \cup L_{3} \cup L_{4} \subset \mathbb{P}^{3}$ be four general lines. Prove: Counted with multiplicities there are exactly two lines $L \subset \mathbb{P}^{3}$ which intersects all four lines.
Hint: Take the special case $L_{1}=V(w, x), L_{2}=V(y, z)$ and $L_{3}=V(w+y, x+z)$ and prove that $L_{1} \cup L_{2} \cup L_{3}$ lies in a unique quadric hypersurface $Q \subset \mathbb{P}^{3}$ isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Exercise 4. Conider a conic $C \subset \mathbb{P}^{2}$ and six different points p_{1}, \ldots, p_{6} on C. Prove Pacal's theorem: The opposite sides of the hexagon $L_{12}=\overline{p_{1} p_{2}}, L_{23}=\overline{p_{2} p_{3}}, \ldots, L_{56}=\overline{p_{5} p_{6}}, L_{61}=$ $\overline{p_{5} p_{6}}$ intersect in three points $q_{1}=L_{12} \cap L_{45}, q_{2}=L_{23} \cap L_{56}, q_{3}=L_{34} \cap L_{61}$ which lie on a line.
Hint: Consider the pencil of cubics

$$
V\left(t_{0} f+t_{1} g\right) \subset \mathbb{P}^{2} \text { with }\left[t_{0}: t_{1}\right] \in \mathbb{P}^{1}
$$

where $f=\ell_{12} \ell_{34} \ell_{56}$ and $g=\ell_{23} \ell_{45} \ell_{61}$ are products of the equation $\ell_{i j}$ of $L_{i j}$.

