next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
TateOnProducts :: beilinsonBundle

beilinsonBundle -- compute a basic Beilinson bundle

Synopsis

Description

The first version computes a basic Beilinson bundle, i.e. the pullback of a Beilinson bundle from a single factor of a the product PP = Pn0 ×... ×Pn(r-1) of r projective spaces.

The second version computes the tensor product of the basic bundles beilinsonBundle(ai,i,E) for i from 0 to r-1. See also Tate Resolutions on Products of Projective Spaces.

The vector bundle B is represented by its S-module of global sections, which is either the quotient or a submodule of a free S-modules depending on the value of the option BundleType.

The results are stashed in E.TateData.BeilinsonBundles, so they are not recomputed.

i1 : (S,E) = productOfProjectiveSpaces {2,3}

o1 = (S, E)

o1 : Sequence
i2 : B1=beilinsonBundle(1,0,E)

o2 = cokernel {1, 0} | x_(0,2)  |
              {1, 0} | -x_(0,1) |
              {1, 0} | x_(0,0)  |

                            3
o2 : S-module, quotient of S
i3 : B2=beilinsonBundle(1,1,E)

o3 = cokernel {0, 1} | x_(1,2)  x_(1,3)  0        0        |
              {0, 1} | -x_(1,1) 0        x_(1,3)  0        |
              {0, 1} | x_(1,0)  0        0        x_(1,3)  |
              {0, 1} | 0        -x_(1,1) -x_(1,2) 0        |
              {0, 1} | 0        x_(1,0)  0        -x_(1,2) |
              {0, 1} | 0        0        x_(1,0)  x_(1,1)  |

                            6
o3 : S-module, quotient of S
i4 : B=beilinsonBundle({1,1},E); betti B

             0  1
o5 = total: 18 18
         2: 18 18

o5 : BettiTally
i6 : B1**B2 == B

o6 = true

See also

Ways to use beilinsonBundle :