next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
TateOnProducts :: directImageComplex

directImageComplex -- compute the direct image complex

Synopsis

Description

Let M represent a coherent sheaf F on a product P=Pn0x..xPnt-1 of t projective space.

Let pi: P -> PI= Xi ∈I Pni denote the projection onto some factors. We compute a chain complex of SI modules whose sheafication is Rpi* F.

The algorithm is based on the properties of strands, and the beilinson functor on PI, see Tate Resolutions on Products of Projective Spaces. Note that the resulting complex is a chain complex instead of a cochain complex, so that for example HH1 RpiM is the module representing R1 pi* F

In the second version we start with a projective scheme X =Proj(R/J) defined by J in some Pn= Proj R with R ≅K[x0..xn] a polynomial ring, an R-module N of representing a sheaf on X, and a matrix phi of homogeneous forms who’s rows define a morphism phi: X -> Pm. In particular the 2x2 minors of phi vanish on X, and phi defines a morphism if and only if the entries of phi have no common zero in X. The algorithm passes to the graph of phi in Pn x Pm, and calls the first version of this function.

Here is an example of the first kind.

i1 : t=2

o1 = 2
i2 : n={1,2}

o2 = {1, 2}

o2 : List
i3 : (S,E)=productOfProjectiveSpaces{1,2}

o3 = (S, E)

o3 : Sequence
i4 : M=(beilinson E^{{-1,-1}})**S^{{-2,-1}}

o4 = cokernel {3, 2} | x_(1,2)  |
              {3, 2} | -x_(1,1) |
              {3, 2} | x_(1,0)  |

                            3
o4 : S-module, quotient of S

We compute the direct image complex of M by projecting to the second factor P2.

i5 : I={1}

o5 = {1}

o5 : List
i6 : J=select({0,t-1},i-> not member(i,I))

o6 = {0}

o6 : List
i7 : RpiM=directImageComplex(M,I)

        ZZ                    2        ZZ                    6
o7 = (-----[x   , x   , x   ])  <-- (-----[x   , x   , x   ])
      32003  0,0   0,1   0,2         32003  0,0   0,1   0,2
                                     
     -2                             -1

o7 : ChainComplex
i8 : betti RpiM

            -2 -1
o8 = total:  2  6
         2:  2  6

o8 : BettiTally
i9 : prune HH_0 RpiM

o9 = 0

       ZZ
o9 : -----[x   , x   , x   ]-module
     32003  0,0   0,1   0,2
i10 : prune HH^1 RpiM

o10 = cokernel {2} | -x_(0,2) 0        |
               {2} | 0        -x_(0,2) |
               {2} | x_(0,0)  0        |
               {2} | -x_(0,1) 0        |
               {2} | 0        x_(0,0)  |
               {2} | 0        -x_(0,1) |

        ZZ                                           ZZ                    6
o10 : -----[x   , x   , x   ]-module, quotient of (-----[x   , x   , x   ])
      32003  0,0   0,1   0,2                       32003  0,0   0,1   0,2
i11 : prune HH^2 RpiM

o11 = cokernel | x_(0,2) x_(0,1) x_(0,0) 0       0       0       |
               | 0       0       0       x_(0,2) x_(0,1) x_(0,0) |

        ZZ                                           ZZ                    2
o11 : -----[x   , x   , x   ]-module, quotient of (-----[x   , x   , x   ])
      32003  0,0   0,1   0,2                       32003  0,0   0,1   0,2
i12 : dim HH^2 RpiM

o12 = 0

HH-2 RpiM is artinian, hence its sheafication is zero. Thus the direct image complex in this case is concentrated in the single sheaf Rpi* F = R1pi* F

i13 : cohomologyMatrix(M,-3*n,3*n)

o13 = | 175h  140h  105h  70h  35h  0 35   |
      | 120h  96h   72h   48h  24h  0 24   |
      | 75h   60h   45h   30h  15h  0 15   |
      | 40h   32h   24h   16h  8h   0 8    |
      | 15h   12h   9h    6h   3h   0 3    |
      | 0     0     0     0    0    0 0    |
      | 5h2   4h2   3h2   2h2  h2   0 h    |
      | 0     0     0     0    0    0 0    |
      | 15h3  12h3  9h3   6h3  3h3  0 3h2  |
      | 40h3  32h3  24h3  16h3 8h3  0 8h2  |
      | 75h3  60h3  45h3  30h3 15h3 0 15h2 |
      | 120h3 96h3  72h3  48h3 24h3 0 24h2 |
      | 175h3 140h3 105h3 70h3 35h3 0 35h2 |

                       13                7
o13 : Matrix (ZZ[h, k])   <--- (ZZ[h, k])
i14 : T=tateResolution(M,-2*n,2*n);
i15 : cohomologyMatrix(strand(T,{0,0},J),-2*n,2*n)

o15 = | 0 0 30h  0 0 |
      | 0 0 16h  0 0 |
      | 0 0 6h   0 0 |
      | 0 0 0    0 0 |
      | 0 0 2h2  0 0 |
      | 0 0 0    0 0 |
      | 0 0 6h3  0 0 |
      | 0 0 16h3 0 0 |
      | 0 0 30h3 0 0 |

                       9                5
o15 : Matrix (ZZ[h, k])  <--- (ZZ[h, k])

As an example of the second version, we consider the ruled cubic surface scroll X subset P4 defined by the 2x2 minors of the matrix

m= matrix {{x0,x1,x3},{x1,x2,x4}},

and the morphism f: X -> P1 onto the base. f is defined by ratio of the two rows of m, hence by the 3x2 matrix phi=mt.

As a module N we take a symmetric power of the cokernel m, twisted by R{d}.

i16 : kk=ZZ/101

o16 = kk

o16 : QuotientRing
i17 : R=kk[x_0..x_4]

o17 = R

o17 : PolynomialRing
i18 : m=matrix {{ x_0,x_1,x_3},{x_1,x_2,x_4}}

o18 = | x_0 x_1 x_3 |
      | x_1 x_2 x_4 |

              2       3
o18 : Matrix R  <--- R
i19 : J=minors(2,m)

                2
o19 = ideal (- x  + x x , - x x  + x x , - x x  + x x )
                1    0 2     1 3    0 4     2 3    1 4

o19 : Ideal of R
i20 : dim J, degree J

o20 = (3, 3)

o20 : Sequence
i21 : s=2,d=-2

o21 = (2, -2)

o21 : Sequence
i22 : N=symmetricPower(s,coker m)**R^{d};
i23 : betti res N

             0 1 2
o23 = total: 3 6 3
          2: 3 6 3

o23 : BettiTally
i24 : annihilator N == J

o24 = true
i25 : phi= transpose m

o25 = {-1} | x_0 x_1 |
      {-1} | x_1 x_2 |
      {-1} | x_3 x_4 |

              3       2
o25 : Matrix R  <--- R
i26 : RphiN = directImageComplex(J,N,phi)

                             1
o26 = 0  <-- (kk[x   , x   ])  <-- 0
                  0,0   0,1         
      -2                           0
             -1

o26 : ChainComplex
i27 : T= ring RphiN

o27 = T

o27 : PolynomialRing
i28 : HH^1 RphiN

       1
o28 = T

o28 : T-module, free, degrees {1}

Now a different symmetric power and a different twist.

i29 : s=3,d=1

o29 = (3, 1)

o29 : Sequence
i30 : N=symmetricPower(s,coker m)**R^{d};
i31 : RphiN = directImageComplex(J,N,phi)

                      11                     9
o31 = (kk[x   , x   ])   <-- (kk[x   , x   ])
           0,0   0,1              0,0   0,1
                              
      0                      1

o31 : ChainComplex
i32 : T=ring RphiN

o32 = T

o32 : PolynomialRing
i33 : netList apply(toList(min RphiN.. max RphiN),i->
          {-i, saturate annihilator HH^(-i) RphiN,betti res HH^(-i) RphiN})

      +--+--------+-----------+
      |  |        |        0 1|
o33 = |0 |ideal ()|total: 11 9|
      |  |        |    0: 11 9|
      +--+--------+-----------+
      |  |        |           |
      |-1|ideal 1 |total:     |
      +--+--------+-----------+
i34 : R0=prune HH^0 RphiN

o34 = cokernel | 0        0        0        0        0        0        -x_(0,1) 0        0        |
               | 0        0        0        0        0        0        0        0        -x_(0,1) |
               | x_(0,0)  0        0        0        0        0        0        0        0        |
               | -x_(0,1) 0        0        x_(0,0)  0        0        0        0        0        |
               | 0        x_(0,0)  0        0        0        0        0        0        0        |
               | 0        -x_(0,1) x_(0,0)  0        0        0        0        0        0        |
               | 0        0        -x_(0,1) 0        x_(0,0)  0        0        0        0        |
               | 0        0        0        -x_(0,1) 0        x_(0,0)  0        0        0        |
               | 0        0        0        0        -x_(0,1) 0        0        x_(0,0)  0        |
               | 0        0        0        0        0        -x_(0,1) x_(0,0)  0        0        |
               | 0        0        0        0        0        0        0        -x_(0,1) x_(0,0)  |

                             11
o34 : T-module, quotient of T
i35 : dim R0, degree R0

o35 = (2, 2)

o35 : Sequence
i36 : betti (sR0Dual = syz transpose presentation R0)

              0 1
o36 = total: 11 2
          0: 11 .
          1:  . .
          2:  . .
          3:  . 1
          4:  . 1

o36 : BettiTally
i37 : saturate annihilator coker transpose sR0Dual

o37 = ideal 1

o37 : Ideal of T
i38 : dual source sR0Dual

       2
o38 = T

o38 : T-module, free, degrees {-4, -5}

We conclude that the sheaf represented by R0 is O(5)+O(4) on P1, which is correct because N represents phi*O(1) and phi* OX(H) = O(2)+O(1).

Caveat

Note that the resulting complex is a chain complex instead of a cochain complex, so that for example HHi RpiM = HH-i RpiM.

See also

Ways to use directImageComplex :