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0 Introduction

This paper deals with discrete subgroups of euclidean vector spaces, equivalently
finitely generated free abelian groups (isomorphic to Zn for some n ∈ N) together
with a positive definite quadratic form. Such a structure will be called a lattice for
short, typically denoted by L,M, . . . , with values (v, w) ∈ R of the bilinear form
(where v, w ∈ V ⊃ L, the enveloping R-vector space). The general background of
this report is provided by the sphere packing problem (construction of lattices with
large minimum), by the theory of modular forms, and by the theory of finite matrix
groups. Almost all lattices of interest for one of the mentioned areas are “algebraic”
or even “rational”, by which we mean that the form takes rational values on them:
(v, w) ∈ Q for v, w ∈ L. After rescaling, that is, multiplying the form with some
positive integral constant α, a rational lattice becomes integral : (v, w) ∈ Z for all
v, w ∈ L. The rescaled lattice will be denoted by αL. By definition, a lattice is
integral if and only if it is contained in its dual lattice

L# := {y ∈ V | (x, y) ∈ Z for all x ∈ L} .

1



H.-G. Quebbemann has observed that quite a few individual lattices which are well
known, or even famous, in one or several of the above mentioned areas (like the
Leech lattice Λ24, the Barnes-Wall lattice BW16, or the Coxeter-Todd lattice K12, the
Quebbemann lattice(s) Q32), share a common structure: after integral normalization,
they are similar to their respective dual lattice. That is, there exists a bijective linear
map σ : V → V , a similarity, and a positive integer `, the similarity factor, such
that

σ(L#) = L and (σx, σy) = `(x, y) for all x, y ∈ V .

Furthermore, these lattices are even, that is (x, x) ∈ 2Z for all x ∈ L. An even
lattice similar to its dual, with similarity factor `, is called a modular lattice of level
`. Under the above circumstances, the integer ` is indeed equal to what is usually
called the level of a lattice L: it is the smallest natural number ` such that `L#, the
rescaled dual lattice, is again even. (It is readily checked that the level of an even
integral lattice ` is equal to the exponent, or twice the exponent of the discriminant
group T (L) := L#/L.)

In his basic papers [Que95] and [Que97], Quebbemann investigates the relation-
ship between his notion of modularity for lattices, and the theory of modular forms.
This leads him, for certain levels `, to the notion of an extremal (modular) lattice.
Roughly speaking, a lattice is extremal if its minimum or minimal norm

minL := min{(x, x) | x ∈ L \ {0}}

is as large as it is possible from the point of view of modular forms. (For self-
dual lattices, ` = 1, this notion is classical [CoSl93].) Since the determinant of an
n-dimensional `-modular lattice necessarily equals `n/2, independently of the par-
ticular lattice, the assumption of extremality also maximizes the (center) density
δ(L) := (minL)n/2/

√
detL of the associated sphere packing. It is therefore of direct

geometrical significance. To avoid an ambiguous notion, the property of being ex-
tremal is more precisely called analytic extremality, whereas the property of being
extreme in the classical sense of geometry of numbers is called geometric extremal-
ity. Recall that L is extreme if the density function attains a local maximum at the
“point” L in an appropriate space of matrices. Quebbemann’s definition of analytic
extremality is restricted to special values of the level `, namely the numbers ` whose
sum σ1(`) of the positive divisors divides 24. We shall comment on this in more
detail in Section 1 below, but observe that these numbers include almost all levels
which have so far been of interest for applications. As was mentioned above, the
starting point of Quebbemann’s work were common properties of some important
known lattices. Once the definition of modularity and analytic extremality was given,
it immediately stimulated further investigations on these and related lattices, and
also led to the discovery of some “new” extremal lattices. What makes the subject
particularly intriguing is the fact that the concept of extremal lattices gives rise to a
finite classification problem. For each of the finitely many levels `, there is an upper
bound on the dimension n up to which extremal lattices of level ` could possibly exist.
This comes from the fact that for large values of n, the (hypothetical) theta series of
an extremal lattice of dimension n = 2k and level `, which is a uniquely determined
modular form Fk,`, has a negative coefficient. For the remaining pairs (n, `), one is
faced with the questions of existence, uniqueness, and possibly full classification of
extremal lattices.
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It is the purpose of this paper to report on what is presently known about these
problems. The results are to a large extent due to Plesken & Nebe and Nebe who
found many extremal (and also many other interesting) lattices in the course of in-
vestigating finite rational matrix groups, to Quebbemann, to Bachoc and Bachoc &
Nebe, and to the present authors, A. Schiemann and B. Hemkemeier. The original re-
sults of this paper are following. We extend the classical finiteness result for extremal
modular forms (see [MOS75]) to other levels; we extend the results of [SchHem94] on
the complete classification of “modular genera” of lattices in “small” dimensions (up
to between 8 and 16, depending on `), to the composite levels ` = 6, 14, 15; we discuss
rather exhaustively the question of a unimodular structure over (real or imaginary)
quadratic fields for those “small” dimensions; we discuss examples of extremality for
some levels other than those considered by Quebbemann. Our classification results,
and also parts of the results on the existence of certain lattices, are essentially based
on computer programs developed in a joint DFG-project and written by B. Hemke-
meier, A. Schiemann, M. Stausberg and F. Wichelhaus. These programs generate
lattices with Kneser’s method of neighboring lattices [Kne57] and can be viewed as
extensions of the program used in the work [SchHem94]. For further developments
in the hermitian case, see [Schi98].

Our treatment will be complete and self-contained by giving a construction (or
at least a precise reference) for each occurring extremal lattice, including the well
known ones. We shall use without further explanation a few basic notions and facts
about lattices (some of them were already mentioned). The reader may consult
[Que95] or [SchVen94] for these, and the books [O’Me71], [Kit93], [Kne73] [MiHu73]
or [Ser70] for general background about integral quadratic forms. In [Ser70], the
reader also finds an exposition of the basic theory of modular forms, including its
application to the simplest case of lattices, namely those of level one. As a condensed
introduction to modular forms including a basic stock of widely used explicit formulas
we recommend [Sko92].

Acknowledgements. We are grateful to Alexander Schiemann and Boris Hemkemeier

for their close cooperation in the computations with lattices. Some of the computations

on modular forms were performed using a program developed by the number theory group

at the Institut für experimentelle Mathematik at Essen and kindly communicated to us

by Michael Müller. We are also grateful to Nils-Peter Skoruppa for excerpts of tables of

modular forms. Finally, our thanks go to Christine Bachoc and Gabriele Nebe who read a

first draft of this paper and suggested corrections and improvements.

1 Basic definitions and some constructions

1.1 Strongly modular lattices

We briefly recall a few standard definitions. A lattice (in the sense of number theory)
is a pair (L, b), where L is a free Z-module of finite rank, say rankL = n, and
b : L×L→ Q is a positive definite symmetric bilinear form. An isometry between two
lattices (L1, b1) and (L2, b2) is a group isomorphism ϕ : L1 → L2 which is compatible
with the forms: b2(ϕx, ϕy) = b1(x, y) for all x, y ∈ L1. Sometimes L is considered to
be embedded into a rational vector space, and by defining V = L⊗ZQ we obtain an
equivalent category if we regard lattices as triples (V, b;L), where (V, b) is a “rational
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quadratic form”, that is, a vector space with a positive definite symmetric bilinear
form, and L a “lattice on V ”, that is a finitely generated subgroup which spans the
vector space V . In this form, the definition immediately extends to the case of a
totally real number field F instead of Q, replacing Z by the ring of integers oF , and
requiring that the form is totally positive definite: b(x, x)σ > 0 for all embeddings
σ : F → R and all x ∈ V , x 6= 0. At some places, we also deal with the case that
F is a totally complex number field endowed with an involution α 7→ α whose fixed
field F0 is totally real, and with hermitian forms h : V × V → F with respect to the
specified involution: h(αx, βy) = αβh(x, y). If necessary, we will speak of quadratic
lattices, respectively hermitian lattices. Notice that in the number field case, lattices
need not be free as modules; the relevant structure theory of such modules (finitely
generated and torsion free) can be found for instance in [O’Me71]. Lattices over oF
are always free if the class number of F is one. In the rational case, the form b will
usually not occur in the notation, we just write (x, y) := b(x, y). Observe that often
the letter L refers to the whole structure (V, b;L) or at least (L, b), and not just to
the module L.

Isometry of lattices will be denoted by L ∼= M .
If (L, b) is a lattice, and α ∈ F is totally positive, then αL denotes the “scaled”

lattice (L, αb); similarly in the hermitian case with α ∈ F0. From the introduction,
we recall the definition of the dual lattice L#. A lattice is called integral if L ⊆ L#

and even if b(x, x) ∈ 2oF for all x ∈ L.
Two lattices are in the same genus if they become isometric over all completions

op of oF

genL = genM ⇐⇒ L⊗ op ∼= M ⊗ op for all places p (including ∞) of F .

The class number of a lattice, or rather of its genus G = genL is the number of
isometry classes contained in G, often denoted by h(G).

The local theory of lattices, that is, the theory of lattices over op, and the theory
of genera are well understood. Details will not play a role in this paper. We only
mention the fact that every lattice over op posseses a Jordan-decomposition

p−rL−r ⊥ p−r+1

L−r+1 ⊥ . . . ⊥ L0 ⊥ pL1 ⊥ . . . ⊥ psLs

where p ∈ op is a (local) prime element and all Li are self-dual op-lattices: Li = L#
i .

If p 6 |2, a Jordan decomposition is unique up to isometry. If p|2, this only holds if
all Li are even. The lattice is called totally even in this case.

The Gram matrix of a free lattice with respect to an oF -basis (v1, . . . , vn) is
the matrix (b(vi, vj))i,j ∈ F n×n. The determinant det(L) of a free lattice L is the
determinant of any of its Gram matrices. It is well defined for F = Q, and for
arbitrary fields well defined modulo squares of units in oF . In the non-free case,
the determinant may be defined as an adele modulo squares of local units; often the
determinant ideal, generated by the determinants of all Gram matrices of n linearly
independent vectors in L, is a sufficiently fine invariant.

For a self-dual lattice L over a non-dyadic discrete valuation ring op, p 6 |2, the
only invariant in addition to the dimension is the (square class of the) determinant
detL ∈ o∗p/o

∗2
p
∼= {±1}. In view of the above mentioned essentially unique Jordan

decomposition this gives a full classification of non-dyadic local lattices. In the dyadic
case, the situation is in several respects essentially more complicated.
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In this paper, we shall have to describe genera of lattices only in the rational case
F = Q. We use the genus symbol as introduced in [CoSl93], Chapter 15. This symbol
is a string of local symbols, one for each prime p = 2, 3, 5, . . . dividing 2 · detL. The
local symbol at the prime p 6= 2 of a lattice L with Jordan decomposition (1.1) as
above is the formal product

t∏
j=−s

(pj)εj,pnj,p with εj,p =

(
detLj
p

)
and nj,p = dimLj .

We do not describe a dyadic symbol in full generality here. Among other things, the
parity “even/odd” of the Jordan component belonging to q = 2t is recorded by a
subscribed qII respectively qI .

As an example, consider the binary lattice B given by the Gram matrix
(
2 1
1 8

)
, of

determinant 15. Over all completions Zp, p 6= 2, it can be diagonalized as B ⊗ Zp ∼=
〈2, 30〉 ⊗ Zp = 〈2, 2 · 3 · 5〉 ⊗ Zp. So the 3-adic symbol is 1−13+1, and the 5-adic
symbol is 1−15+1. The 2-adic symbol is 1+2

II , where the +-sign expresses the fact
that detL = detL0,2 ≡ ±1 mod 8. We shall usually suppress the unimodular parts
of the local symbols, since the dimensions n0,p and the signs ε0,p are determined by
the total dimension and determinant and the other nj,p, εj,p, j ≥ 1. Furthermore,
we shall indicate the parity of the unimodular component at p = 2, which equals
the parity of the total lattice, and the total dimension n by writing the symbol as
In(. . .) respectively IIn(. . .) and omitting also the component 2

ε0,2n0,2

I/II . So our final

symbol for the above example B will be II2(3
+15+1). Similarly, the lattice

(
4 1
1 4

)
can

be diagonalized as 〈1, 3 · 5〉 ⊗ Zp for p 6= 2, and thus has the symbol II2(3
−15−1).

In the following, we use the notation m‖` if m and ` are integers, m divides `,
and m and `/m relatively prime. In this case we say that m is an exact divisor of `.

Definition 1.1 Let L be an integral lattice, ` the exponent of its discriminant group
L#/L, and q an exact divisor of `. The partial dual DqL of L is defined as

DqL := q(1
q
L ∩ L#) .

The lattice DqL is integral again, and Dq(DqL) ∼= L (canonically). If q and r are
as above and coprime, the operators Dq and Dr (on isometry classes of lattices of
fixed exponent `) commute: DqDrL = DrDqL. Clearly, Dq is also defined for lattices
over Zp (of appropriate exponent), and the operator Dq commutes with localization
and thus maps genera onto genera. For a Zp-lattice L with Jordan decomposition as
above, and q = ps, we have

DqL ∼= Ls ⊥ pLs−1 ⊥ p2Ls−2 ⊥ . . . ⊥ psL0 ,

so Dq acts by reversing the sequence of p-Jordan-components. The operator Dq does
not affect the other localizations L⊗Zp′ , p′ 6= p as modules, but because of rescaling
by q, it in general does change the isometry class of the quadratic form.

In this paper, only genera with square free exponent ` = `(L) will play a role.
Furthermore, n = 2k is even, and detL = `k, so that for each p, the unimodular and
the p-modular Jordan component have the same dimension n0,p = n1,p = k. Even
in this special situation, Dp need not preserve every genus. Obviously, Dp, p 6= 2
does so if (and only if) k is even, or p is a square mod q for all odd primes q 6= p
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dividing `. As an example D3(II2(3
+15+1)) = D5(II2(3

+15+1)) = II2(3
−15−1), and

indeed D3B ∼= D5B ∼= B′, where B, B′ are the above binary lattices of determinant
15.

Notice that a lattice of square-free exponent ` is totally even if and only if both
L and D2L are even. In this case, ` equals what is usually called the level of L: the
smallest natural number m such that the rescaled dual lattice mL# is again even.

We now come to the most important definition of this section, the significance of
which has first been pointed out by H.-G. Quebbemann.

Definition 1.2 An integral lattice L is called strongly modular if DmL ∼= L for all
exact divisors m of the exponent ` of L#/L. It is called modular if D`L ∼= L.

In the definition of strong modularity, one could restrict m to prime powers since
DmL ∼=

∏
q|m

DqL, where q runs over the prime powers exactly dividing m. Except

for the self-dual case, ` = 1, a modular lattice must have even dimension, n = 2k,
say. If L has even determinant and is totally even and modular, then its dimension
is divisible by 4.

We refer to [Que97] for examples.
If F is a totally real number field and (L, b) a quadratic oF -lattice of rank n, we

can consider the Q-valued scalar product (x, y) = tr b(x, y) on FL, where tr : F → Q
denotes the trace. The Z-lattice of rank n · [F : Q] thus obtained is denoted by LZ.
It is said to be obtained by transfer form L. The oF -dual

Ld := {y ∈ V | b(x, y) ∈ oF for all x ∈ L}

and the Z-dual are related by the formula

(LZ)# = D−1F/QL
d ,

where DF/Q denotes the different of F over Q. (This follows immediately from the
definition of the different, or rather its inverse, which is a fractional ideal in F .) An
immediate consequence is the formula

detLZ = dnF · N(detL)

where dF denotes the field discriminant of F and N denotes the norm. We leave
it to the reader to formulate a more precise statement for relation between the
discriminant groups Ld/L and L#/L (in the integral case). When L is self-dual,
Ld = L, it amounts to dF · L# ⊆ L, and indeed L#/L ∼= (oF/DF/Q)n. Everything
remains true for hermitian lattices subject to the above conditions.

The most important special case for particular constructions is that of a quadratic
field F = Q(

√
D), for a square free integer D. One has dF = D if D ≡ 1 mod 4, and

dF = 4D if D ≡ 2, 3 mod 4. We redefine (x, y) = 1
2

tr b(x, y) if D ≡ 2, 3 mod 4; then

the above formula holds in both cases, with (
√
D) instead of DF/Q, and D instead

of dF . The lattices LZ obtained from self-dual lattices L over Q(
√
D) are not only

D-elementary, L#
Z /LZ ∼= (Z/DZ)n, but even modular. The desired similarity from

L#
Z to LZ is simply given by multiplication with

√
D.
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In the real quadratic case, we obtain a non-trivial extension of the transfer con-
struction, which we call twisted transfer, as follows. The scalar product on the
Z-module L is defined as (x, y) = tr(α · b(x, y)) for some fixed totally positive ele-
ment α ∈ F . It is convenient to write α = λ/δ, where δ is a generator of the different
of F over Q (which may be totally positive or not!). Then the above equalities read
(LZ)# = λLd, detLZ = (Nλ)n · N(detL), and LZ is Nλ-elementary for self-dual L.
Modularity of LZ need not hold, but we have the following easy lemma.

Lemma 1.3 Consider a Z-lattice LZ of level ` obtained by twisted transfer (x, y) :=
tr
(
λ
δ
b(x, y)

)
from a self-dual lattice (L, b) over a real quadratic field F , where Nλ = `

and (δ) = DF/Q. If Nλ > 0 and (L, b) is isometric to its conjugate lattice, then LZ
is `-modular.

Of course, by “conjugate” lattice we understand the lattice L with the form
b(x, y)′, where β 7→ β′ is the non-trivial field automorphism of F , and β.v = β′v for
β ∈ F , v ∈ FL is the twisted module-structure.

1.2 Theta series

We recall a few well known facts from the analytic theory of quadratic forms, or
lattices. If L is an even lattice of even dimension n = 2k and level `, we denote by

ΘL(q) =
∑
m≥0

rL(m)qm , rL(m) := |{x ∈ L | (x, x) = 2m}|

its theta series, where as usual q = e2πiz and z is a variable in the upper half plane.
This is a modular form of weight k for the group Γ0(`) and a certain quadratic
character ε : Γ0(`)→ {±1}. Using standard notation for the action of PSL2(R) on
modular forms of weight k, this means that

ΘL|kγ = ε(γ)ΘL .

The character ε only depends on the signed determinant (−1)k det(L) of L, and is
trivial if this is a square. So in that case we have modular forms of weight k and
level ` in the strict sense, i.e. invariant under Γ0(`). We denote by Mk(`, ε) the
finite-dimensional complex vector space of these modular forms, and by Sk(`, ε) the
subspace of cusp forms. If L and M are lattices in the same genus, then the difference
ΘL −ΘM is a cusp form.

In the following we shall assume that ` is square free. This includes the as-
sumption that L is totally even, and ` is equal to the exponent of L#/L. De-
note by Γ∗0(`) the normalizer of Γ0(`) in PSL2(R). The factor group Γ∗0(`)/Γ0(`)
is 2-elementary abelian, generated by certain cosets WmΓ0(`), m|`, which are inde-
pendent mod Γ0(`); for ` = m one obtains the Fricke involution W` represented by(
0 −1
` 0

)
. Since ε is quadratic, W` acts on Mk(`, ε), and if ε is trivial, all the Wm act

as commuting involutions on Mk(`, ε) (the Atkin-Lehner involutions). Hence, if ` is
prime or ε is trivial, Mk(`, ε) splits into eigenspaces Mk(`, χ) with respect to the
characters χ : Γ∗0(`)→ µ4 = {±1,±i} extending ε.

A basic result now is the so-called Atkin-Lehner-identity which says that for any
lattice L of level `, and any divisor m of `, the theta series of the partial dual, ΘDmL
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is proportional to the Atkin-Lehner-transform ΘL|kWm of the original theta series,
with a certain numerical factor depending only on the genus. See [Que97] for a
precise statement and formula. In particular, if L is strongly modular, then ΘL is
an Atkin-Lehner-eigenform:

ΘL ∈Mk(`, χ) , χ = χgenL

for a certain character χ depending only on the genus of L.
The following dimension formula for prime levels is taken from [Que95].

Proposition 1.4 For a prime number ` ≤ 23, even weight k and χ(W`) = (−1)k/2,
χ trivial on Γ0(`), the dimension of Mk(`, χ) is equal to

dimMk(`, χ) =
k

2
g0(`) + 1 +

1

2
bk

4
c
(

1 +

(
−1

`

))
+

1

2
bk

3
c
(

1 +

(
−3

`

))
with

g0(`) =


0 for ` = 1, 2, 3, 5, 7, 13
1 for ` = 11, 17, 19
2 for ` = 23

The following dimension formulae were derived from [SkoZa88]; see [Que97] for the
levels 6, 14, 15.

Proposition 1.5 For even weight k and χ trivial on Γ0(`) one has:

dimSk(10, χ) =
1

4
·
[

3(k − 1) + (−1)k/2

2
− 2− ηχ(W2) + (−1)k/2 (χ(W5) + χ(W10))

]
with

η =

{
+1 if k ≡ 2, 4 mod 8

−1 if k ≡ 0, 6 mod 8.

dimSk(21, χ) =
1

4
(tr(W1) + χ(W3) tr(W3) + χ(W7) tr(W7) + χ(W21) tr(W21))

with

tr(W1) =
8k − 14

3
+

2

3


0 k ≡ 4 mod 6

−1 k ≡ 2 mod 6

+1 k ≡ 0 mod 6

,

tr(W3) = (−1)k/2
4

3
+ (−1)k/2

2

3


−2 k ≡ 4 mod 6

+1 k ≡ 2 mod 6

+1 k ≡ 0 mod 6

,

tr(W7) = 0,

tr(W21) = 2(−1)k/2.
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1.3 Extremality

In this subsection, we specify the general setup in which extremality of a lattice can
be defined in terms of its theta series.

Definition 1.6 a) Let M be a subspace of Mk(L). We say that extremality is
definable with respect to M if the projection M → Cd to the first d = dimM
coefficients of the q-expansion

f =
∑
m≥0

amq
m 7→ (a0, a1, . . . , ad−1)

is injective. If this holds, the unique element F =: FM ∈M with q-expansion

F = 1 +
∑
m≥d

amq
m

is called the extremal modular form in M.
b) Let L be an even lattice of dimension 2k and level ` andM be a subspace

of Mk(`, ε) with ΘL ∈ M (where as above ε denotes the character defined by the
determinant of L). We say that L is extremal with respect to M if extremality is
definable with respect to M and ΘL = FM.

Thus if L is extremal, then minL ≥ 2 dimM is as large as the specified space
M of modular forms allows. Notice that according to the definition we have chosen,
“extremality” is defined under rather general circumstances, but a strong necessary
condition for existence of extremal lattices is that the extremal modular form FM
should have non-negative coefficients. In section 2 we shall prove that, for certain
levels `, this holds for only finitely many k.

The general definition of extremality is not of much use as long as no restrictions
on the space M are imposed. We shall not treat this problem in general. In the
modular and strongly modular case, the Atkin-Lehner identity suggests the following
choice of M. Here k must be even for prime levels ` ≡ 1(4); we shall also assume
that k is even if ` is composite. Then the character on Γ0(`) describing the action
on theta series is trivial, and {±1}-valued on the involutions Wm.

Definition 1.7 Consider a genus G of level `, determinant `k, and containing (strongly)
modular lattices (e.g. ` prime). Let δ be the character on Γ0(`) and let χ be the
character on the group of involutions Wm describing G:

χ(Wp) = gp(L) for L ∈ G

with gp(L) the Gaussian sum from [Que97].
A (strongly) modular lattice in G is called (strongly) modular extremal if it is

extremal with respect to the subspace

{f ∈Mk(`, δ) | f |kW` = χ(W`)f}

respectively

Mk(`, χ) = {f ∈Mk(`, δ) | f |kWm = χ(Wm)f ∀m‖`}.
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The investigation of genera of small level ` and “small” (relative to `) dimension
n shows that often the lattices with largest known minimum among all lattices of
level ` and determinant `n/2 are strongly modular extremal lattices. However, not
all strongly modular extremal lattices do have the largest occurring minimum, not
even within their genus, as the following “negative” example shows.

Example. Consider the genus G = II8(3
−45−4) of dimension 8 and level 15, repre-

sented for instance by B ⊥ B′ ⊥ B′ ⊥ B′, with B and B′ as above. This genus does
not contain “obvious”, i.e. decomposable strongly modular lattices. (The reason is
that II4(3

252) has only two classes B ⊥ B and B′ ⊥ B′ and thus no strongly modular
lattice). However, complete enumeration of G, with class number h(G) = 68 shows
the following:

(a) G contains exactly 2 (classes of) strongly modular lattices; they have minimum
4.

(b) G contains a unique lattice with minimum 6; this lattice is not strongly mod-
ular.

(c) The strongly modular lattices with minimum 4 are strongly modular extremal.

Part (c) is verified as follows: for the appropriate character χ given by χ(W3) =
χ(W5) = −1, the space M4(15, χ) is two-dimensional, the space of cusp forms
S4(15, χ) is one-dimensional, and a non-zero cusp form Σn≥1anq

n has a1 6= 0. Thus
extremality is definable, and strongly modular lattices with minimum 4 are extremal.

Notice that parts (a) and (b) of this example show that even without using the
notion of extremality, we can state the fact that the largest minimum in a genus is
not always attained by a strongly modular lattice

2 Extremal modular forms

The rather general notion of extremality introduced in 1.6 has its origin in the in-
vestigation of the special cases of the full modular group (` = 1) in [MOS75] and
certain special ones of the Γ∗0(`) in [Que95, Que97]. In the case ` = 1 it was proved
in [MOS75] (extending results of Siegel [Sie69]) that extremality is definable for all
even weights, that the unique extremal modular form has (except for the zeroth
coefficient 1) even integral Fourier coefficients a(n), that a(d) is positive and that
a(d+ 1) is negative for large weights. These results do not carry over to the general
situation in which extremality is definable. In particular it is not known in general
whether the d-th Fourier coefficient of the extremal modular form is non zero (hence
what the minimum of an extremal lattice is) or whether the extremal modular form
has (even) integral Fourier coefficients and hence is at all eligible for being the theta
series of a lattice. For the situations considered in [Que95, Que97] however, we have
the following result (of which part i) is from [Que95, Que97]). As usual, σ0(`) denotes
the number of divisors and σ1(`) the sum of the divisors of `.

Theorem 2.1 i) Let ` be one of the integers 1, 2, 3, 5, 6, 7, 11, 14, 15, 23
and let χ be the character on Γ∗0(`) defined by (−`

d
)k on Γ0(`), by χ(W2) = 1,

χ(W3) = (−1)k/2 (case 6a) or χ(W2) = (−1)k/2, χ(W3) = 1 (case 6b) for ` = 6,
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by χ(W2) = 1, χ(W7) = (−1)k/2 for ` = 14, by χ(W3) = 1, χ(W5) = (−1)k/2

for ` = 15, and χ(W`) = ik for the remaining values of `.

Then extremality is definable for Mk(`, χ).

With

k1(`) :=
12σ0(`)

σ1(`)

one has

d` := dimMk(`, χ) = 1 +

[
k

k1(`)

]
.

ii) In the cases above the extremal modular form has integral Fourier coefficients
ak(n) (that are even for n > 0). Moreover, one has ak(d`) > 0 for all k and
ak(d` + 1) < 0 for k large enough (depending on `, χ).

Proof 2.2 i) has been proven in [Que95, Que97], where it is also shown thatMk(`, χ)
has a basis consisting of the functions Θi

N∆j
`, where N = N(`, χ) denotes a strongly

modular lattice of minimal dimension k0 = k0(`) with respect to ` and χ,

∆`(z) =
∏
m|`

η(mz)
24

σ1(`) .

This implies immediately that the extremal modular form has (even) integral Fourier
coefficients and allows to deduce the assertion about a(d`) and a(d` + 1) in the same
way as in [MOS75]; some of the details have been carried out in [Sze95]. We sketch
the main steps briefly: With

ϕ :=
∆`

Θ
(k1(`)/k0(`))
N

one has an expansion

Θ
−(k/k0(`))
N (q) =

∞∑
s=0

α(s)ϕ(q)s

in a sufficiently small disk |q| ≤ r < 1, where ΘN(q) and ϕ(q) denote the expansions
with respect to q = exp (2πiz) of these functions. For the coefficients α(s) one has

α(d`) < 0,

and
α(d` + 1)

α(d`)

is asymptotic to

Θ
(k1(`)/k0(`))
N (e−2πy0)

∆`(e−2πy0)
,

where y0 is the (unique) positive zero of the derivative of (y 7−→ ∆`(e
−2πy)) and ΘN

and ∆` are again viewed as functions of q. Moreover one has

a(d`) = −α(d`)
a(d` + 1) = −α(d` + 1) + α(d`)·2k1(`)

σ0(`)

([
k

k1(`)

]
+ 1

)
+

k1(`)
k0(`)

−
k − k1(`)

[
k

k1(`)

]
k0(`)

 ,
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where c1 = c1(`) is the first Fourier coefficient of ΘN . The boundedness of the
quotient

α(d` + 1)

α(d`)

then implies the assertion.

Remark 1. a) It is not difficult to calculate y0 in the above argument explicitly

to high accuracy. If one then replaces the quotient α(d`+1)
α(d`)

by its asymptotic value

given above, one obtains a heuristic bound for the maximal weight kmax(`, χ) of an
extremal modular form with positive coefficient a(d` + 1). For ` = 1 a value of
kmax(`) ≤ 20500 is given in [MOS75]. For the other values of `, χ considered here we
have the following table:

` 2 3 5 6a 6b 7 11 14 15 23
kmax 3118 473 82 134 146 37 17 22 22 6

Table 2.1

We calculated the extremal modular form in the weights below this bound and
found that the coefficient a(d` + 1) becomes negative a little earlier than this bound.
The following tables give the values obtained for the jump weights (i.e., k with
k1(`)|k) and general weights.

` 2 3 5 6a 6b 7 11 14 15 23
kmax 2936 378 40 100 100 12 6 16 14 2

Table 2.2

` 2 3 5 6a 6b 7 11
kmax 3062 412 58 118 122 26 11

Table 2.3

Using the formulas above one can calculate from the extremal theta series the
coefficients α(d`), α(d`+1) and finds that the quotient α(d`+1)

α(d`)
seems to tend to its

asymptotic value quite slowly, but from below, so that beyond the values of k given
above one should not expect any further extremal modular forms with positive co-
efficient a(d` + 1). In particular, there should be no extremal lattices of the types
considered and dimension bigger than the values of 2kmax(`, χ) given above (we will
see that our list of known extremal lattices terminates much earlier in all cases except
` = 23).

b) As in [MOS75] one can also prove the existence of a bound k̃max(`, χ, ν) for
ν ∈ N such that any modular form in Mk(`, χ) with constant term 1 and vanishing
Fourier coefficients a(1), . . . , a(d` − ν) of weight k > k̃max(`, χ, ν) has at least one
negative Fourier coefficient (and hence cannot be a theta series).

c) If k = 2 and the character χ on Γ∗0(`) is trivial the condition under which
extremality is definable just means that the modular curve H/Γ∗0(`) has no Weier-
straß point at the cusp ∞. A more general notion of Weierstraß points has been
introduced by Petersson in [Pet49] and investigated by Smart in [Sma66]. A detailed
investigation of the Weierstraß points for the situations of interest here and of the
consequences for theta series of lattices will be the subject of future work.

12



Remark 2. As in [Que97] our discussion of the extremal modular form in this
section is limited to those cases in which a direct generalization of the methods
from the case of level 1 is possible. In particular we do not discuss all strongly
modular genera of levels 6, 14, 15 but only those in dimension 4r obtained by taking
r-fold orthogonal sums of the 4-dimensional genera G4(2

−3+) = II4(2
−2
II 3−2) (case6b),

G4(2
+3−) = II4(2

2
II3

2) (case 6a), G4(2
+7−) = II4(2

2
II7

2), G4(3
+5−) = II4(3

−25−2) with
the G4()-notation as in [Que97].

Remark 3. E. Rains informed us that he can prove the nonexistence of strongly
modular lattices in the genera r ·G4(2

−7+) = II4r(2
−2r
II 7−2r) (r odd) and G4(2

+7−) ⊥
r · G4(2

−7+) = II4r+4(2
−(2r+2)
II 7−(2r+2)) (r odd) of dimension 4r resp. 4r + 4 and

in certain other genera of levels 2N, 4N with N ≡ −1 mod 8. We have received a
preprint version ([RaSl98]) during the final revision of this article.

We conclude this subsection with a table of minima of extremal lattices for the
levels treated in Theorem 2.1, part i) up to minimum 12. An entry in brackets means
that the extremal modular form has a negative coefficient.

` 1 2 3 5 6 7 11 14 15 23
n

4 – 2 2 2 2 2 4 4 4 6
6 – – 2 – – 4 4 – – (8)
8 2 2 2 4 4 4 6 6 6 (10)

10 – – 2 – – 4 6 – – (12)
12 – 2 4 4 4 6 8 8 8
14 – – 4 – – 6 8 – –
16 2 4 4 6 6 6 (10) 10 10
18 – – 4 – – 8 10 – –
20 – 4 4 6 6 8 (12) 12 12
22 – – 4 – – 8
24 4 4 6 8 8 10
26 – – 6 – – 10
28 – 4 6 8 8 10
30 – – 6 – – 12
32 4 6 6 10 10 12
34 – – 6 – – 12
36 – 6 8 10 10
40 4 6 8 12 12
44 – 6 8 12 12
48 6 8 10
52 – 8 10
56 6 8 10
60 – 8 12
64 6 10 12
68 – 10 12
72 8 10
76 – 10
80 8 12

Table 2.4: Minima of (hypothetical) strongly modular extremal lattices
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3 On the Existence and uniqueness of extremal

lattices

In this section we follow the program of Quebbemann [Que95], [Que97]. That is, we
consider strongly modular lattices of level ` with σ1(`) (sum of divisors of `) dividing
24. We recall from the previous section the table of minima of such lattices (if they
exist). We give a survey of what is presently known about these lattices. Some of
the results are “classical” in the sense that they were known before [Que95]. Many
“new” extremal lattices occurring were found by Nebe and Plesken & Nebe in the
course of their investigation of maximal finite rational matrix groups. Other new
lattices were constructed by Bachoc using number fields, quaternions, and codes.
A complete investigation of all cases of small dimension n (up to n = 8, . . . , 16,
depending on the level `) was obtained in [SchHem94] for prime levels and is com-
pleted in this paper. We survey the results according to the minimum 2, 4, 6, 8,
and distinguish between “minimal dimensions” (the smallest dimension for which
the minimum in question could occur), and other (usually less interesting) dimen-
sions. For the levels considered in this section, we are aware of only one extremal
strongly modular lattice with minimum 10. This is no. 19 of [NePl95] of level ` = 15;
for strong modularity, see [Neb97]. Gram matrices for the lattices stabilized by an
integral maximal finite matrix group are contained in the program package GAP
[Scho97]. A big collection of Gram matrices of modular lattices is also part of the
‘Catalogue of lattices’ of G. Nebe and N.J.A. Sloane which can be obtained from
http://www.research.att.com/~njas/lattices/.

3.1 Extremal lattices with minimum 2

This case occurs for the levels ` ≤ 11 and is a bit exceptional and trivial. Indeed,
there is no real condition on the minimum, any strongly modular lattice of the
appropriate dimension is extremal.

Minimal dimensions. This is the respective smallest dimension n0 for which a
totally even lattice L of level ` with ` ≤ 11 and determinant `n/2 exists. For ` = 1,
one has n0 = 8, for ` = 2, 5, 6, one has n0 = 4, for ` = 3, 7, 11, one has n0 = 2. In
all these cases, the class number of the respective genus (for ` = 6, there are two
of them) is one. Thus in each case, an extremal lattice exists and is unique. For
` = 1, 2, 3, it is the root lattice E8, D4, A2, for ` = 7, 11 the binary lattice with
Gram matrix

(
2 1
1 4

)
,
(
2 1
1 6

)
, respectively. For ` = 6, the genus II4(2

−2
II 3−2) consists

of the root lattice A2
2A2, and the genus II4(2

2
II3

2) consists of a reflective lattice (see

[SchBla96]) with root system C2
3C2. A Gram matrix of this lattice is

(
2 0 1 1
0 2 1 −1
1 1 4 0
1 −1 0 4

)
;

the orthogonal group is (necessarily) equal to the Weyl group, of order 64.

Other dimensions. For the following pairs (n, `) with higher n modular lattices L
of minimum 2 in the respective genus are still extremal.

(n, `) = (16, 1), (8, 2), (12, 2);
(4, 3), (6, 3), (8, 3), (10, 3);
(4, 7).
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The known (and rather trivial) classification of all these lattices shows that they are
all modular, and thus extremal. (The classification for ` = 2 and 3 can be readily
obtained from the classification in the higher-dimensional cases (16, 2), (12, 3) in
[SchVen94] by restricting to decomposable lattices.) The class numbers are shown
in the following small table.

n \ ` 1 2 3 7
4 − 1 1 1
6 − − 1
8 1 1 2
10 − − 3
12 − 3
16 2

Table 3.1: Some class numbers

3.2 Extremal lattices with minimum 4

Minimal dimensions. These dimensions n(`, 4), for the various levels `, are shown
in the following table. It is known that in each case there exists an extremal lattice,
and is unique up to isomorphism. The complete classification of all genera of lattices
in question is also known, the class number is given in the third row of the table. We
recall from Section 2 that for the composite levels ` = 6, 14, 15, the genus in question
is one out of two totally even genera of determinant `n/2, namely II8(2

4
II3

4), II4(2
2
II7

2),
II4(3

−25−2), respectively. In the fourth row the number of classes of strongly modular
lattices is indicated.

` 1 2 3 5 6 7 11 14 15 23
n(`, 4) 24 16 12 8 8 6 4 4 4 2

h 24 24 10 5 8 3 3 3 3 2
hsm 24 16 10 5 6 3 3 3 3 2

Table 3.2: Minimal dimensions for extremal lattices with
minimum 4, and class numbers

Other dimensions. The following table contains, for each level `, the dimensions
above the minimal dimension for which extremal lattices have minimum 4. The
third row contains the class number of the respective genus, if this is known. In the
missing cases (for ` = 1, 2, 3), the class number is very large, and a full classification
at present is out of reach. The last row contains the number of known isomorphism
classes of extremal lattices. We see that extremal lattices always exist. They are
unique in the two cases (n, `) = (11, 6), (7, 8) of small class number, and, more
surprisingly, also for (3, 14). In all other cases they are most probably not unique.

` 1 2 3 5 6+ 6− 7 11
n 32 40 20 24 28 14 16 18 20 22 12 12 12 8 10 6
h 29 163 48 308 284 8 30 5
hext ≥ 22 ≥ 3 ≥ 3 ≥ 1 ≥ 1 1 6 ≥ 1 ≥ 1 ≥ 1 4 6 4 1 4 1

Table 3.3: Extremal lattices of minimum 4 in non-minimal
dimensions
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Description of the lattices in minimal dimensions.

` = 1 This is the famous lattice Λ24 of Leech [Lee64].Its uniqueness has been proved
by Conway [Con69], using modular forms. Perhaps the most basic among the various
constructions for Λ24 is the following one: Take the binary Golay code G; this is the
unique linear binary self-dual code of length 24 and minimum weight d(G) = 8. The
lattice L(G) has the root system 24A1 = {±a1, . . . ,±a24} (no new roots occur since

d(G) = 8). Λ24 is the neighbor of L(G) with respect to the vector u = −3
2
a1 + 1

2

24∑
i=2

ai

(it is obvious that this lattice is even and has minimum 4).

` = 2 This is the lattice Λ16 = BW16 of Barnes and Wall [BaWa59]. Quebbemann
in [Que95] has given a proof of its uniqueness similar in spirit to Conway’s proof
for the Leech lattice, using modular forms. The uniqueness is also a consequence
of the classification in [SchVen94] of all lattices of minimum 2 in the genus II16(2

8
II),

combined with the mass formula. A basic construction using codes, again analogous
to the case of the Leech lattice, is the following. Take the first-order Reed Muller code
R = R(1, 4), i.e the binary linear code of length 16, dimension 5, and minimal weight
8, generated by the codewords 116, 1808, 14041404, 1202120212021202, 1010 . . . 10. The
lattice LR of determinant 210 has a unique totally even overlattice of index 2, obtained

by adjoining 1
2

16∑
i=1

ei. This is the desired lattice BW16.

` = 3 The extremal lattice in this genus is the Coxeter-Todd lattice [CoTo53]. It
is obtained by ordinary transfer from a certain self-dual hermitian lattice K6 over
the Eisenstein integers Z[ω], ω3 = 1. The latter lattice is the unique 6-dimensional
self-dual Z[ω]-lattice containing no vectors of norm 1 [Feit78]. (This clearly implies
that minK6,Z ≥ 4.) A convenient construction for K6 is by lifting the so called
hexacode C6 over F 4. This code is by definition generated by the rows of

1 0 0 1 ω ω
0 1 0 ω 1 ω
0 0 1 ω ω 1

,

(where now ω is understood as an element of F 4 \ F 2). It is clearly self-dual with
respect to the standard hermitian form an F 6

4. Consequently, the set of all 1
2

∑
xiai,

xi ∈ Z[ω], (x1, . . . , x6) ∈ C6 has the desired properties. Alternatively, K6 can be ob-
tained by twisted transfer (x, y) 7→ tr(h(x, y)/(5+

√
5)/2) from the self-dual Z[ω, ε5]-

lattice J3(5) used below in the case of minimum 8 and ` = 15. A full classification
of the genus without the use of a computer has been given in [SchVen95].

` = 5 There exists a unique even unimodular lattice in dimension 4 over Z
[
1+
√
5

2

]
.

Its orthogonal group is the reflection group of type H4; a Gram matrix is directly
read off from the Coxeter diagram

◦ ◦ ◦ 5 ◦

as follows: the diagonal entries are equal to 2, the ij-entry, for i 6= j, is −2 cos π
mij

,

where mij ∈ {2, 3, 5} is the order of the corresponding product of reflections, as
indicated in the diagram. Ordinary transfer of H4 gives a 5-modular Z-lattice, which
is clearly of minimum 4. This is our desired lattice Q.
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` = 6 An 8-dimensional strongly modular lattice of level 6 and with minimum 4 can
be obtained very easily asD4⊗A2. It follows from the general theorem7.1.1 in [Kit93],
or by an elementary computation, that the minimum is indeed not smaller than 4.
Alternatively, this is immediately clear from the following number field construction
of the same lattice: consider the field F = Q(ζ24) = Q(i,

√
2,
√
−3) = Q(ζ8, ζ3) of

24th roots of unity, its ring of integers oF ∼= Z[ζ8] ⊗ Z[ζ3] with the twisted transfer
(x, y) = trFQ

xy

2(2−
√
2)

of the unit form over oF . It is indeed readily checked that

oQ(ζ8) = Z[ζ8] = Z
[√

2+
√
−2

2
, i
]

with the hermitian form tr
Q(ζ8)
Q

(
xy

2(2−
√
2)

)
gives the

D4-lattice. Namely, this lattice L satisfies L# = 2(2 −
√

2)D−1L = 2
√

2D−1L =
(1 − ζ8)L, where D = (1 − ζ8)7 is the different of Q(ζ8). This lattice is even since

tr xx
2(2−

√
2)

= 2 tr
Q(
√
2)

Q
xx

2(2−
√
2)

and 2(2 −
√

2)Z[
√

2] is the different of Q(
√

2) over Q.

and thus tr
Q(
√
2)

Q
xx

2(2−
√
2)
∈ Z.

` = 7 There is as well-known self-dual hermitian Z[α]-lattice, α = 1+
√
−7

2
, of dimen-

sion 3 and minimum 2, which we denote be J3 (following [Coh76]). Its unitary group
is U(J3) = 2×G168, where G168

∼= L3(2) ∼= L2(7) is a famous simple group of order
168. The group U(J3) is a primitive irreducible complex reflection group, occurring
as no. 24 in the basic list of such groups given by Shephard and Todd [ShTo54]. A
Gram matrix for J3 showing up in this context is

J3 ∼=

 2 α 1
α 2 1
1 1 2

 .

It also occurs in the work of Mimura [Mim82], where hermitian lattices over imagi-
nary quadratic fields, generated by norm 2 vectors, are classified. (The significance of
the field Q(

√
−7) in this “direct” approach by the way is that α is the unique imag-

inary quadratic number with trace 1 and norm 2.) The desired extremal 7-modular
lattice is obtained from J3 by ordinary transfer. It is isometric to the Barnes lattice
P6 and to the Craig lattice A

(3)
6 .

` = 11 Due to the fact that Nπ = 3, where π = 1+
√
−11
2

, there is an obvious binary

unimodular Z[π]-lattice with minimum 2, given by the Gram matrix

(
2 π
π 2

)
. From

this a 4-dimensional extremal 11-modular lattice is obtained by ordinary transfer.

` = 14 An extremal 4-dimensional strongly modular lattice of level 14 is obtained by

ordinary transfer from the binary Z[α]-lattice (of determinant 2) given by

(
2 α
α 2

)
,

where α = 1+
√
−7

2
as usual. The modularity with respect to the prime 2 is not directly

given by α, but comes from the fact that

(
2 α
α 2

)
is isometric to its complex

conjugate (cf. Proposition 1.3).

` = 15 The trace form trFQ(xy) on oF , where F = Q(
√

5,
√
−3), clearly gives a

strongly modular lattice of level 15 and minimum 4.

Description of the lattices in other dimensions.

` = 1 One might suspect that many among, perhaps most of the 32-dimensional
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unimodular lattices have minimum 4. However, despite the efforts of several authors
(notably Koch and Venkov, Koch and Nebe, and Blaschke-Requate), only relatively
few such lattice have been obtained by a structural algebraic construction, and it
is difficult to show that the lattices constructed are indeed non-isomorphic. A few
lattices have been constructed and distinguished using particular automorphisms
[Que92], [BQS95]. A attempt to the systematic construction of all extremal lattices
regardless of their automorphisms is the notion of neighbor defect δ(L) of [KoVe89,
KoVe91]. This number is defined as 32 minus the largest rank r of the root system
of a neighboring lattice M (the root system R(M) is necessarily of the form rA1).
So the lattices of neighbor defect 0 are by definition the 2-neighbors of the ordinary
‘lifts’ L(C), where C is a self-dual binary code of length n = 32 and minimal weight
8. The smallest values for δ are 0, 8, 12, 14, 15, and in these cases the “defect lattice”
is unique. The lattices with neighbor defect 0 and 8 are classified [KoVe89, KoVe91],
[KoNe93], there are 5 + 10 of them. 7 pairwise non-isomorphic lattices of neighbor
defect 12 are known, by [Bla96].

It is an easy consequence of the Minkowski-Siegel mass formula that there are
at least 8.45 · 1051 classes of extremal even unimodular lattices in dimension 40; see
Peters [Pet83]. The first explicit example of such a lattice has been given by McKay;
see [CoSl93], Chapter 8.5. Later extremal unimodular lattices emerged in a standard
way from the investigation of self-dual binary codes C of length 40 and minimal
weight 8; see above. Ozeki investigated in [Oze88] these lattices for three particular
codes and showed that they have distinct Siegel theta series of degree two. Using the
above class number estimate, Peters showed in [Pet90] that the Siegel theta series of
degree 2 are not a classifying invariant for the set of all extremal even unimodular
lattices in dimension 40. See also [CaSl97] and [CoSl93], Chapter 7.7, page 194, for
further references.

` = 2 In dimension 20, two extremal lattices are known from [PlNe95], p. 49; see
also [BQS95]. A third one, with automorphism group of order 214325 has been found
in the course of a projected complete enumeration of this genus, using a suitable
refinement of the computer program of [SchHem94]. C. Bachoc and B. Venkov have
announced a proof of the fact that there are no further extremal lattices in this genus.

In [Bac95, Bac97], Theorem 6.7, it is shown, by a uniform construction using
codes, that, for all three dimensions in question, 20, 24 and 28, an extremal lattice can
be obtained from a suitable self-dual lattice over a maximal order of the quaternion
algebra Q2,∞.

` = 3 For dimension 14, see [SchHem94]. For dimensions 16 to 22, such lattices
come from self-dual hermitian lattices over the Eisenstein integers, by [Feit78]; see
also [Bac97], Theorem 6.7.

` = 5 Complete enumeration of the 12-dimensional genus in [SchHem94] has shown
that there are 4 extremal lattices. A. Schiemann in [Schi98] has shown that there
are no less than 29 classes of self-dual hermitian lattices over Z(

√
−5) giving rise to

such Z-lattices.

` = 6 For both genera in question, of dimension 12, we have obtained by computer
the full classification of all lattices, and the determination of the strongly-modular
ones among those with minimum 4. The ‘plus-genus’ II12(2

636) is the one coming
from even self-dual hermitian lattices over Z(

√
−6). This genus has been classified
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completely in [Schi98]. There are 161 classes, 41 of them have minimum 4. It turns
out that all 6 extremal lattices in II12(2

636) have one or several self-dual hermitian
structures. Conversely, each hermitian lattice with minimum 4 and the correct num-
ber 84 of minimal vectors (there are 14 such lattices) actually gives rise to a strongly
modular Z-lattice.

` = 7 The classification of all lattices in dimensions 8 and 10 is again taken from
[SchHem94]. The existence of a self-dual hermitian structure on such lattices is
mentioned in [Bac97] and completely worked out in [Schi98].

` = 11 See [SchHem94]. No appropriate hermitian lattice exists, by [Schi98].

3.3 Extremal lattices with minimum 6

Minimal dimensions. The minimal dimension n(`, 6) is given in the following ta-
ble. Extremal lattices do not exist for ` = 7, they exist in all other cases. The class
number is very large and not known if ` ≤ 6; for ` ≥ 7 it is shown in the third row
of the table. The fourth row collects the known information about the number of
extremal lattices. For ` = 3, 5 uniqueness of extremal lattices is an open question.

` 1 2 3 5 6 7 11 14 15 23
n(`, 6) 48 32 24 16 16 12 8 8 8 4

h 395 31 80 91 6
hext ≥ 3 ≥ 3 ≥ 1 ≥ 1 ≥ 5 0 1 1 2 1

Table 3.4: Extremal lattices with minimum 6 in minimal
dimensions

Other dimensions. The following table collects the known information about the
existence of extremal lattices of minimum 6 above the minimal dimension. The class
numbers are very large and not known except for (n, `) = (10, 11).

` 1 2 3 5 6 7 11
n 56 64 36 40 44 26 28 30 32 34 20 20 14 16 10
hext ≥ 1 ≥ 1 ≥ 3 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 2

Table 3.5: Extremal lattices of minimum 6 in non-minimal dimensions

Description of the lattices in minimal dimensions.

` = 1 If an extremal self-dual ternary code C of length 48 is extremal, that is, has
minimal distance 15, then the ordinary lift L(C) is an odd unimodular lattice, whose
(pairs of) minimal vectors are precisely the canonical basis vectors of 3I48 ⊂ L(C).
The 2-neighbor Λ(C) := L(C)(u) for the vector u = 1

3
(−5, 1, . . . , 1) is even and

has minimum 6. There are two such codes known, a Pless doubly circulant code
and a quadratic residue code, giving rise to lattices called P48p, respectively P48q

in [CoSl93], pp. 148 f. and 195. In view of well known automorphism groups of
the respective code, their automorphism group contains 2L2(23) × S3 and 2L2(47),
respectively. The absence of a common integral overgroup in GL48(Q) (see [CoSl93],
refering to J. Thompson) implies that P48p and P48q are non-isometric (and their
groups in fact indentical to the above groups). Recently, G. Nebe has reconstructed
these two lattices and their groups, correcting an error about the second group, and
has constructed a third extremal unimodular lattice; see [Neb96].
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` = 2 Extremal 2-modular lattice in dimension 32 have been considered by H.-G.
Quebbemann already in 1984. They are famous because of the fact that they give
rise to the densest known sphere-packing in this dimension, surpassing the laminated
lattices Λ32. In [Que84b], such a lattice is constructed using the quaternion group
of order 8 acting on 8 copies of the D4-root lattice. A different construction is
given in [Que87], namely as a self-dual lattice over Z[ζ8]. In [Bac95], Théorème 5.2,
C. Bachoc has constructed an 8-dimensional non-integral quaternionic lattice over
the Hurwitz integers such that the underlying Z-lattice is 2-modular extremal. It
is shown in [BaNe97] that no integral (and thus self-dual) such quaternionic lattice
exists. Another 2-modular extremal lattice has been constructed in [Neb96], Theorem
5.1. It is known from (highly non-trivial!) computer calculations [PlSo97] that the
four constructions mentioned actually give rise to non-isometric Z-lattices. In fact,
the orthogonal groups are known, and are pairwise distinct.

` = 3 An extremal 3-modular lattice in dimension 24 has been constructed by Nebe,
using a certain 24-dimensional rational representation of the group SL2(3)×SL2(13);
see [Neb95], p. 39, Satz (VI. 8). This matrix group by the way is not maximal finite
and thus does not directly belong to the subject of [Neb95]. It however occurs
systematically in the course of the investigation of invariant lattices for the cyclic
groups C52 and C78 (see the Introduction of [Neb95]).

` = 5 According to Nebe and Plesken [NePl95], the group 2.Alt10 occurs as an irre-
ducible maximal finite matrix group in dimension 16, leaving invariant a 5-elementary
lattice of determinant 58 and minimum 6. A numerical verification using the Gram
matrix of loc. cit. shows that this lattice is modular. In [Neb97] a more conceptual
proof is given, based on the observation that a similarily between L# and L must
normalize the orthogonal group of L.

` = 6 Everything is completely analogous to the case ` = 5. This time, the group
is a quotient of Sp4(3)× C3 × SL2(3),of order 210365. Four other extremal lattices,
with groups of orders 2436, 2834, 26345, 21033 have been found by computer.

` = 7 An extremal 7-modular lattice with minimum 6 does not exist in the minimal
dimension n = 12 by [SchHem94].

` = 11 The unique 4-dimensional even unimodular lattice H4 over Q(
√

5) gives rise
to an 8-dimensional 11-elementary lattice of minimum 6 by twisted transfer with
1+3
√
5

2
√
5

of norm 11
5

. It follows from Lemma 1.3 that this lattice is 11-modular. It
is the unique lattice with minimum 6 in its genus, and does not posses a self-dual

hermitian structure over Z
[
1+
√
−11
2

]
.

` = 14 There is a unique 4-dimensional even unimodular lattice over Q(
√

2), called
∆′4 in the literature. Let π = 3 −

√
2 of norm 7, and consider L = ∆′4,Z with

twisted transfer tr
(
π
2
· −
)
. Since tr

(
π
2
(u+ v

√
2)
)

= 3u − 2v and |v| ≤ u/
√

2 for

totally positive u + v
√

2, it readily follows that minL = 6. Furthermore, L is
strongly modular: the similarily with multiplier 2 is given by multiplication with√

2, the desired similarily of norm 7 is x 7→ π′σ(x), where β 7→ β′ is the non-trivial
automorphism of Q(

√
2), and σ an isomorphism from ∆′4 onto its conjugate lattice

(i.e. σ is antilinear and (σx, σy) = (x, y)′ ∈ Z[
√

2] for any two x, y ∈ ∆′4; see Lemma
1.3 above). The orthogonal group of L is identical to O(∆′4), which is the semi-direct
product of C2 with the Weyl group W (F4), of order 2832. A complete enumeration
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of the genus II8(2
+4
II 7+4) (with class number 80) shows that L is the unique lattice

with minimum 6 in this genus.

` = 15 Even unimodular lattices ∆ over Z[
√

6] give 15-elementary Z-lattices by

twisted transfer with β = −3+2
√
6

2
√
6

. Since tr
(
β(u+ v

√
6)
)

= 2u − 3v and u ≥
√

6|v|
for totally positive u + v

√
6, it is readily checked that min ∆Z ≥ 6 if ∆ does no

represent 2. By [Sch94], there exists one such Z[
√

6]-lattice in dimension 4. Arguing
as in the case ` = 14, one shows strong modularity of ∆Z. A complete enumeration
of the genus II8(3

+45+4) (with class number 91) shows that it contains 4 lattices with
minimum 6. Two of these are strongly modular, with orthogonal groups of order
2432, respectively 2532; the other two are modular, but not strongly modular. (The
latter lattices have larger groups, of orders 2433 and 21332).

Description of the lattices in other dimensions.

` = 1 An extremal unimodular lattice in dimension 56 has been obtained by com-
bining a construction of Ozeki with the existence of a ternary [56, 28, 15]-code; see

[Oze89], Example 5. The “Quebbemann-Craig-lattice”B
(4)
56,1, self-dual over Z(

√
−29),

is another (not necessarily non-isometric) example; see [BQS95].
In dimension 64, one has the well known lattice Q64 of Quebbemann; see [Que84b]

or [CoSl93], Chapter 8.3.

` = 2 Already for n = 36, one may suspect that a large portion of this huge genus of
lattices consists of extremal ones. However, no attempt to prove a result like this is
known. A systematic construction of three such lattices B

(m)
36,2,m = 3, 4, 5 is contained

in [BQS95] (“Quebbemann-Craig-lattices”). They are self-dual over Z[
√
−2] and

admit an automorphism of order 19. Since the number 82080 of minimal vectors in
these lattices is sufficiently small and since one automorphism of large order 19 is
already known, the computer program of [PlSo97] allows to calculate the orthogonal
groups. The three groups are of different orders 24 · 32 · 5 · 19, 22 · 32 · 19, 26 · 33 · 5 · 19
in particular, the lattices are pairwise non-isometric. Another construction [Bac97]
which is partly systematic (a quaternionic code construction) and partly ad-hoc (a
2-step neighboring) also gives a lattice with the desired properties; it is very unlikely,

but not completely impossible that this lattice should be isometric to one of the B
(m)
36,2.

In dimensions 40 and 44, an example again based on quaternions and codes is
given in [Bac97]; nothing else is known.

` = 3 In dimensions 26, 28 and 32, such lattices have been obtained first in [Bac97],
using codes. This method failed in dimensions 30 and 34. In these dimensions,
A. Schiemann has constructed extremal 3-modular lattices as a self-dual hermitian
lattices, using a sophisticated computer search. (The same method was succesfully
applied also for the dimensions 26, 28 and 32.)

` = 6 Using the same tools as in the case ` = 3, A. Schiemann has found a 10-
dimensional self-dual hermitian lattice over Z(

√
−6). Its transfer to Z turned out to

be strongly modular.

` = 7 For n = 14, the existence is open. In [Schi98], A. Schiemann shows that such

a lattice cannot have a self-dual hermitian structure over Z
[
1+
√
−7

2

]
. For n = 16, it

is readily checked that the well-known unique 8-dimensional self-dual Z[
√

2]-lattice
with minimum 4 (see [HsHu89]) gives rise to a 7-elementary lattice of minimum 6 by
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twisted transfer tr
(

1+2
√
2

2
√
2
· −
)

. (Notice that tr
(

1+2
√
2

2
√
2

(u+ v
√

2)
)

= 2u+ v and use

some easy estimates.) A numerical verification using Gram matrices proves strong
modularity. Schiemann’s work reveals the surprising fact that also in this dimension,

no appropriate Z
[
1+
√
−7

2

]
-lattice exists.

` = 11 These 10-dimensional lattices have been obtained by computer classification
of the whole genus in [SchHem94].

3.4 Extremal lattices with minimum 8

The genera (possibly) containing extremal lattices of minimum 8 all have so large
class numbers that a full classification is out of reach (and would probably be not
very interesting). The only exception to this statement is the case (n, `) = (6, 23),
where however extremal lattices do not exist. Also, a full classification or even just
a good estimation of the number of extremal lattices (if they exist) seems to be
intractable. Therefore, we limit ourselves in the following table to indicate what is
known about the existence of extremal lattices. “yes” means that there exists at
least one extremal lattice; in all these cases, one might suspect that there exist in
fact many, but so far nobody seems to have worked on the problem of producing as
many as possible non-isomorphic ones. “no” means that it is proved that extremal
lattices do not exist; at present, there are only two such cases. The cases ` = 1, 3, 7 in
dimensions 72, 36, 18, respectively, are the most fascinating ones, since here extremal
lattices would be more dense than all known lattices in these dimensions. We suspect
that they do not exist. C. Bachoc and B. Venkov have announced a proof of this
fact for ` = 7. Based on numerical experience, we also conjecture that an extremal
11-modular extremal lattice in dimension 14 does not exist.

` 1 2 3
n 72 80 88 48 52 56 60 36 38 40 42 44 46

? yes yes ? yes

` 5 6 7 11 14 15 23
n 24 28 24 28 18 20 22 12 14 12 12 6

yes yes ? yes no yes yes no

Table 3.6: Existence of extremal lattices with minimum 8

The non-existence for ` = 23 is trivial, since the corresponding extremal modular
form (of weight 3 and non-trivial character) reads

1 + 66q4 + 24q5 − 22q6 + . . .

and thus cannot be a theta series.
The non-existence result for (n, `) = (12, 11) has been proved by Nebe and Venkov

and is of a more sophisticated nature. In this case, the extremal modular form has
non-negative coefficients “as far as one can see”. It is however possible to derive
from the assumed knowledge of this theta series sufficiently many restrictions on
the second degree theta series of the lattice in question to succeed in showing that
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the corresponding space of Siegel modular forms does not contain such a series with
non-negative coefficients.

` = 1 In dimension 80, it is not possible any more to verify by computer the min-
imum of an arbitrary lattice (given by a gram matrix, say). Therefore, we have
to distinguish between the construction of an appropriate lattice and the verifica-
tion of its minimum. A plausible candidate of an extremal unimodular lattice in
dimension 80 has been given in [SPi93], essentially going back to [Que81], using an
automorphism of order 79. Two candidates with automorphisms of order 41, and a
unimodular hermitian structure over Z(

√
−41) have been constructed in [BQS95].

The first construction, using codes, where the minimum could actually be verified
was given by C. Bachoc; see [BaNe98]. The method is explained in [Bac97]. In this
case, it gives rise to two non-isometric lattices. A different construction relates one
of these to the well-known 20-dimensional extremal 7-modular lattice; see below.

` = 2 A 48-dimensional 2-modular lattice with minimum 8 has been constructed
by Bachoc in [Bac97], Theorem 6.7. Quebbemann has observed that such a lattice
can be easily obtained by the so-called η-construction from the Leech lattice with its
structure over the Hurwitz order. See the end of [Bac97] for details.

` = 3 In [BaNe98] an extremal 40-dimensional 3-modular lattice is constructed as
the tensor product over Z[α], α = (1 +

√
−7)/2 of the 10-dimensional Z[α]-lattice

mentioned below in the case ` = 7, with a maximal order in the quaternion algebra
Q3,∞ ramified at the places 3 and ∞. A code construction for the same lattice is
also given.

` = 5 There is a well known, in fact unique, 12-dimensional even unimodular lattice

with minimum 4 over Z
[
1+
√
5

2

]
; see [CoHs87]. By ordinary transfer, this gives a 24-

dimensional 5-modular lattice with minimum 8.

` = 6 Two lattices with minimum 8 in the appropriate 24-dimensional genus are
exhibited in [Neb95] (numbers 16 and 17). In [Neb97] it is shown that they are
strongly modular.

` = 7 A 10-dimensional self-dual hermitian Z[α]-lattice, α = (1 +
√
−7)/2, giving

rise to a 20-dimensional 7-modular Z-lattice with minimum 8 and automorphism
group 2.M22.2 has already been described in the Atlas [Con85].

` = 14 A 12-dimensional lattice of determinant 2676 and minimum 8, invariant
under the group L2(7) × D8 is exhibited in section VII, p. 36 of [PlNe95]. Strong
modularity can be verified using the Gram matrix given on p. 64 of [PlNe95].

` = 15 From the theory of complex reflection groups [Coh76], p. 408, the following

unimodular hermitian lattice over Z[ω, ε5], ω = −1+
√
−3

2
, ε5 = 1+

√
5

2
with minimum 2

is known:

J3(5) ∼=

 2 −ωε5 −1
−ωε5 2 −1
−1 −1 2

 .

Ordinary transfer gives a 12-dimensional 15-elementary Z-lattice which is clearly
strongly modular (use

√
−3 and

√
5) and has minimum 8. This lattice is isometric

to the one presented in section VII, p. 36 of [PlNe95]. One further lattice of minimum
8, which also turned out to be strongly modular, was found by computer search.
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4 Further genera containing extremal lattices

In this section we give numerical results on those strongly modular genera of lattices
of square free level ` ≤ 21 which are not covered by Section 3. These are the
levels 10, 13, 17 and 21 and part of the genera of levels 6, 14 and 15. For small
enough dimensions it is shown by explicit consideration of the Atkin-Lehner action
on modular forms that extremality is definable. Various extremal modular forms are
calculated, and results on the existence of extremal lattices similar in spirit to those
of Section 3 are given. It turns out that a certain lattice of dimension 16, level 21
and minimum 12 occurring in the work of Nebe and Plesken [NePl95] is extremal.

` = 6 After Section 3, only the genera II2k(2
−k
II 3−k) with k ≡ 0(4) remain to be

considered. So the character values are χ = (−−), and the dimension formula 1.4
gives

dimSk(6,−−) =
k

4
− 1 .

Dimension 8. Since dimS4(6,−−) = 0, extremality is definable and strongly
modular lattices of minimum 2 in II8(2

−4
II 3−4) are already extremal. There is exactly

one such lattice (the class number of the whole genus is 5).

Dimension 16. The essentially unique non-zero cusp form in the one-dimensional
space S8(6,−−) has non-zero first coefficient. Therefore extremality is definable, the
extremal modular form is

F8,6,−− = [1, 0, 42, 832, 5754, . . .] ,

(writing the coefficients of 1, q, q2, . . . as a row vector). No lattice with this theta
series could be found.

` = 10 In each dimension 2k with even k, there exist two genera II2k(2
±k
II 5±k) of

totally even 10-elementary lattices of determinant 10k. The signs of the genus symbol
coincide with the character values. Recall the dimension formula Proposition 1.5 for
Sk(10, χ).

Dimension 4. Both genera have class number 1, there are no non-zero cusp forms.
The respective unique lattice is necessarily strongly-modular and extremal.

Dimension 8. The genus II8(2
4
II5

4) has class number 24, the genus II8(2
−4
II 5−4) has

class number 19, and 8, respectively 3 of the lattices are strongly modular. In both
cases, the space of cusp forms is one-dimensional, so strongly modular lattices of
minimum 4 are extremal. There are 3, respectively 1 such lattices. Their theta
series are [1, 0, 24, 48, 216, 288, 672, . . .], respectively [1, 0, 10, 120, 110, 320, 520, . . .].

Dimension 12. Both genera are too large to be classified completely.
In the case of II12(2

6
II5
−6), the space of cusp forms is two dimensional, extremality

is definable, and therefore strongly modular lattices of minimum 6 would be extremal.
No such lattice is known. Extensive computer search has produced only two lattices
with minimum 6. They are 10-modular and transformed into each other by D2

(or D5). For II12(2
−6
II 56), the space of cusp forms is one-dimensional, extremality is

definable, and extremal lattices (of minimum 4) exist. In fact, there is an abundance
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of minimum 4 lattices in this genus, with various different theta series, therefore it
was helpful for the search to calculate first the extremal modular form

F6,10,−+ = [1, 0, 12, 136, 444, 1872, . . .] .

Dimension 16. For the genus II16(2
8
II5

8), the space of cusp forms is 3-dimensional.
This means that the minimum 8 lattice in this genus given in [NePl95] (see [Neb97]
for strong modularity) is actually extremal. Two further such lattices (with smaller
groups of orders 210 · 3 and 29 · 32) have been found by computer search.

In the case of II16(2
−8
II 5−8), the space of cusp forms is two dimensional. The

extremal modular form is

F8,10,−− = [1, 0, 0, 100, 770, 3968, . . .] ,

no lattice with this theta series has been found.

` = 13 Even 13-elementary lattices of dimension n = 2k and determinant 13k exist
only in dimensions divisible by 4, and the relevant modular forms belong to the
trivial character. The dimension formula Proposition 1.4 applies.

Dimension 4. We consider the genus II4(13−2), with character value δ = −. The
dimension formula Proposition 1.4 gives dimM2(13,−) = 0, i.e. there are no non-
zero cusp forms. Thus extremality is definable, and extremal lattices have minimum
2. The class number of the genus is 1, the unique lattice is of course modular and
has minimum 2.

Dimension 8. We have to consider modular forms of weight 4 and trivial character
χ = χ0. The dimension of this space is known from Proposition 1.4: dimM4(13,+) =
3. The genus theta series (see [Kri95]) reads

Θ4,13,+ =
1

170
(E4(q) + 169E4(q

13)) = 1 +
24

17
(q + 9q2 + 28q3 + 73q4 + . . .) .

A basis of the space of cusp forms is given by the following two newforms:

C1 = [0, 1, 0, 4,−4, . . .]

C2 = [0, 0, 1,−3, 1, . . .]

Clearly, extremality is definable, and extremal lattices are the modular lattices with
minimum 6. The extremal modular form is

F4,13,+ = Θ4,13,+ −
24

17
C1 −

24 · 9
17

C2 = [1, 0, 0, 72, 96, . . .].

Complete enumeration of the genus II8(13+4), with class number 37, shows that there
is exactly one lattice with minimum 6. This lattice is modular, and thus modular
extremal.

` = 14 The genera II2k(2
k
II7

k) with even k have already been treated in Section 3
(existence of strongly modular extremal lattices is known for dimensions 4, 8 and
12). In the cases II2k(2

−k
II 7−k), nothing is to be done since strongly modular lattices

do not exist, according to the result of Rains and Sloane mentioned in Remark 3 of
Section 2.
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` = 15 The genera II2k(3
εk5εk) with even k and ε = (−1)k/2 have already been

treated in Section 3. For the genera with ε = −(−1)k/2, we have the following
partial, less interesting results.

Dimension 4. For II4(3
252), with character values χ = (−+), the space of cusp

forms is trivial, the class number is 2, no strongly modular lattice exists.

Dimension 8. This case has been treated in the example after Definition 1.7.

Dimension 12. For II12(3
656), with character values χ = (−+), the space of cusp

forms is 2-dimensional, extremality is definable. The extremal modular form is

F6,15,++ = [1, 0, 132, 156, 552, 1056, . . .] .

Eight lattices with this theta series have been found, six of them are modular, none
is strongly modular.

` = 17 Like in the case ` = 13, lattices of the type considered exist only in dimen-
sions divisible by 4, and the relevant modular forms belong to the trivial character.
The dimension formula Proposition 1.4 applies.

Dimension 4. The corresponding space of modular forms has dimension
dimM2(17,+) = 2. A cusp form has a non-zero first coefficient. Thus extremality
is definable, and extremal lattices have minimum 4. The class number of II4(17+2)
is 3, there is a unique lattice with minimum 4 which is modular and thus modular
extremal.

Dimension 8. The dimension formula gives dimM4(17,+) = 4. The genus theta
series reads

Θ4,17,+ = 1 +
24

29
[0, 1, 9, 8, 73, 126, 252, . . .]

As a basis of the cusp forms, one can take

C1 = [0, 1,−10, 12, 38,−2, 84, . . .]

C2 = [0, 0,−2, 1, 10,−2,−20, . . .]

C3 = [0, 0, 0,−1,−3, 0, 6, . . .].

Because of the triangular form of this “matrix”, extremality is definable. The coeffi-
cient of q6 of the extremal modular form F4,17,+ is calculated as −48, thus extremal
lattices cannot exist.

` = 19 The genus II2k(19(−1)kk) exists and is modular for all even dimensions 2k (this
of course holds for any prime ` ≡ 3 mod 4). We have checked that extremality is de-
finable for k = 1, . . . , 5, and calculated the dimension dimSk(19, (−1)k) = 0, 1, 2, 3, 3
respectively (for even k, see Proposition 1.4). Complete enumeration of the genus is
possible for k ≤ 4, with class numbers 1, 3, 11, 181. It turns out that in each case,
there is a unique lattice with minimum 2, 4, 6, 8 respectively. This lattice is modular
and thus extremal. In dimension 10, we were unable to find a lattice of minimum 8.

` = 21 For each dimension 2k with even k there are two appropriate genera of
lattices II2k(3

εk7δk). For k ≡ 2 mod 4, the character values are opposite to the signs
of the genus symbol: χ(W3) = −ε, χ(W7) = −δ. The dimension formula Proposition
1.5 applies; for the values k = 2, 4, 6, 8, we have checked that extremality is definable.
In the following, we write dχ instead of dimSk(21, χ) for short.
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Dimension 4. For the genus II4(3
−272), we have dχ = 0, so extremality is trivially

definable. However, no strongly modular lattice exists. (By the way, the class number
is 2, and one of the two lattices has minimum 4.) In the case of II4(3

27−2), we have
dχ = 1, the class number is 3, all lattices are strongly modular, one of them has
minimum 4 and is thus extremal.

Dimension 8. The class number of II8(3
474) is 305, and 45 lattices are strongly

modular. The dimension dχ = 2, so the strongly modular lattices of minimum 6
are extremal; there are 6 such lattices. This genus by the way contains one lattice
of minimum 8, which is necessarily not strongly modular. The class number of
II8(3

−47−4) is 245, exactly one of these lattices is strongly modular. This lattice
has minimum 4. On the other hand, the dimension formula gives dχ = 2 again, so
extremal lattices would have minimum 6, and no extremal lattice exists. (The genus
contains 14 lattices of minimum 6 and no lattice with larger minimum.)

Dimension 12. Evaluation of the dimension formula shows that extremality would
require minimum 8 for the genus II12(3

−676) and minimum 10 for II12(3
67−6). The

extremal modular forms are

F6,21,−+ = [1, 0, 0, 0, 64, 194, 474, 864, . . .] .

F6,21,+− = [1, 0, 0, 0, 0, 378, 504, 756, . . .] .

In the first case many lattices with minimum 8 are known, but no one with the
desired theta series. In the second case, the largest known minimum in the genus is
8, and not 10.

Dimension 16. For the plus-genus, one has dχ = 5, and there exists indeed a
strongly modular lattice of minimum 12 in this genus, by [NePl95]. No other lattice
of minimum 12 has been found in this genus. For the minus-genus, the dimension is
dχ = 4, but no lattice of minimum 10 could be found.
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