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Introduction

An integral symmetric matrix S = (sij) ∈ M sym
m (Z) with sii ∈ 2Z gives rise to an

integral quadratic form q(x) = 1
2

txSx on Zm. If S is positive definite, the number
r(q, t) of solutions x ∈ Zm of the equation q(x) = t is finite, and it is one of the
classical tasks of number theory to study the qualitative question which numbers t
are represented by q or the quantitative problem to determine the number r(q, t)
of representations of t by q either exactly or asymptotically.

Starting with the work of Euler, Legendre–Gauß and Lagrange–Jacobi on the num-
ber of ways in which an integer can be represented as a sum of two, three and
four integral squares, many deep and beautiful results have been obtained concern-
ing these problems, as well in this classical setting as in generalized settings like
the study of representations with congruence conditions, representation numbers
of forms q′ of rank n ≤ m by q, representation numbers or measures by definite or
indefinite forms over the ring of integers of a number field.

In this article I want to give a survey of what is known (and what is not known)
about these questions. In particular we will discuss and slightly extend some recent
results about representation of numbers by totally definite forms of rank 3 over the
integers of a totally real number field in Section 5. We will also discuss some recent
progress concerning effectivity of results. Another recent survey is [20].

1. Basic notions and problems

To fix some notations, we consider an integral symmetric nonsingular matrix S ∈
M sym

m (Z) with even diagonal and the nondegenerate quadratic form

(1.1) q(x) =
1
2

txSx

on Zm given by S.

We may equivalently consider a lattice L =
⊕m

j=1 Zej of full rank m in the rational
vector space V with quadratic form q : V −→ Q (satisfying q(L) ⊆ Z) and attached
symmetric bilinear form B(x, y) = q(x+y)− q(x)− q(y) and obtain S as the Gram
matrix S = (B(ei, ej)) attached to q and the basis (e1, . . . , em) of L.

We will also consider the situation where Z is replaced by the ring of integers oF

of a number field F , in which case an oF -lattice of rank m is by definition an oF -
submodule of the m-dimensional F vector space V which generates V over F and
is finitely generated over oF . In particular, a lattice is not necessarily free as an
oF -module, and considering lattices with quadratic form is a little more general
than just considering Gram matrices in the number field situation.

If L is free, the discriminant dL is the square class of the determinant of a Gram
matrix, in the general case the discriminant ideal dL is the ideal generated by the
determinants of the Gram matrices of the free sublattices of L of full rank. The
level N = N(L) is the inverse of the ideal generated by q(L#) (where L# is the
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dual lattice) or a generator of that ideal if it is principal. Since in the number
field situation the case that nL := q(L)oF is different from oF can not (as over
Z) be avoided by scaling the quadratic form, we denote by Ñ(L) the reduced level
Ñ(L) = (nL)−1 ·N(L) and by d̃(L) the reduced discriminant

(1.2) d̃(L) = d(L) · (nL)−rk(L).

If F is totally real and q totally definite we consider for t ∈ oF the number

(1.3) r(L, t) = r(L, q, t) = #{x ∈ L | q(x) = t}
of representations of t by the quadratic lattice (L, q) = (L, qL); more generally we
consider for another quadratic lattice (K, qK) the number r(L,K) of isometries
(with respect to qK , qL) of K into L; if F is Q and T is a Gram matrix of (K, qK)
we have

(1.4) r(L,K) = r(S, T ) = #{X ∈ M(m× n, Z) | tXSX = T}
(If K = Zx is of rank one with q(x) = t, then r(L,K) = r(L, q, t) above).

If q is not totally definite, one studies instead the representation measure (Darstel-
lungsmaß) µ(L,K) or µ(S, T ) [61, 45], which is defined in terms of the measure of
a fundamental domain of a (real or adelic) orthogonal group modulo the action of
a discrete subgroup. We will usually write r(L,K) for µ(L,K) if this cannot cause
confusion.
In the discussion of measures we will always exclude the cases that (FK)⊥ or FL
is a hyperbolic plane, in which the measures become infinite.
The starting point of all considerations is the following

Local-global principle (Hasse–Minkowski):

If (L, qL) and (K, qK) are nondegenerate integral quadratic oF -lattices as above,
then (K, qK) is represented by some lattice in the genus of (L, q) = (L, qL) if and
only if Kv := K ⊗ oFv

is represented by Lv = L⊗ oFv
for all places v of F (i.e., if

K is represented by L locally everywhere).

Here the genus of (L, q) is the set of all quadratic oF -lattices that are isometric to
some lattice on V that is in the orbit of L under the action of the adelic orthogonal
group OV (A) of V .

It is part of this local-global principle that this characterization of the genus is
equivalent to each of the following:

a) (L, qL) and (M, qM ) are in the same genus if L and M represent each other
locally everywhere.

b) (L, qL) and (M, qM ) are in the same genus if and only if (L ⊗ F, qL) and
(M ⊗F, qM ) have the same signature at all archimedean places of F and if
for each ideal a of oF there is a linear isomorphism from L to M that is an
isometry modulo a.

It is well-known that only this weak version of local-global principle is valid, classical
examples are the binary forms x2 + 55y2 and 11x2 + 5y2 belonging to the same
genus, where the second form represents e.g. 5 and 11 but not the first, and the
Ramanujan form x2 +y2 +10z2, for which the numbers not of the form 4k(16n+6)
are represented locally everywhere and for which there are 18 numbers known that
are represented locally everywhere but not by the form itself globally.
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The quantitative version of the local-global principle is

Siegel’s main theorem:[60, 61, 62, 40]

For definite L and K as above let O(L) be the (finite) group of isometries of (L, qL)
onto itself and put

(1.5) m(gen L) =
h∑

i=1

1
|O(Li)|

,

where L1, . . . , Lh is a full set of representatives of the isometry classes cls(Li) of
lattices in the genus gen(L) of L (which is a finite set by reduction theory).
Then the average number of representations

r(gen L,K) :=
1

m(gen L)
·

h∑
i=1

r(Li,K)
|O(Li)|

is equal to

(1.6) r(gen L,K) = cn,m,F

∏
v

αv(L,K),

where the product is over all places v of F , cn,m,F is a constant depending on F ,
m = rk(L), n = rk(K), the local representation densities αv(L,K) are determined
for nonarchimedean v by counting the number of representations modulo pj

v of K
by L for large enough j and the product of the αv(L,K) over the archimedean v is
(up to a constant depending on the signatures of qL, qK) equal to

(1.7) NF
Q ((d̃L)−rk(L)/2) ·NF

Q ((dK · (nL)−rk(K))
rk(L)−rk(K)−1

2 .

If (L, qL) is indefinite, an analogous formula is true, with r(Li,K)
|O(Li)| replaced by the

representation measure µ(Li,K) and m(gen L) replaced by the measure µ(gen L)
of the genus.
A version of this theorem for representations with congruence conditions is valid
as well [2]. In fact, in the arithmetic proof the formula given above is obtained by
summing up a similar formula that is valid for each genus of representations (i. e.,
a set of representations that can locally everywhere be transformed into each other
by an isometry of the lattice) over the finitely many genera of representations of
K by L, and if one sums only over those genera satisfying a specific congruence
condition, one obtains the main theorem for representations with congruence con-
ditions. Similarly, in the representation theoretic proof using Weil’s ideas [66, 47], a
formula for representations with congruence conditions is simply obtained by using
a different test function.

In view of these two basic local-global results, work on the representation properties
of integral quadratic forms usually deals with the following problems

Problem A: Describe as precisely as possible the set of lattices of
some fixed rank n that are represented locally everywhere by L but
are not represented by L, in particular, try to prove that this set is
finite or at least very small in some meaningful sense.

Problem B: Try to either compute the difference r(L,K)−r(gen L, K)
as explicitly as possible or to prove that it is small compared to
r(gen L,K) for K that are sufficiently large in some sense, e.g.
have large minimum.



4 RAINER SCHULZE-PILLOT

Problem C: Compute r(gen L,K) explicitly, i.e., compute the
local representation densities αv(L,K) either by giving formulae or
by giving efficient algorithmic procedures, and bound r(gen L,K)
from below by giving bounds for the local densities.

It is both arithmetically interesting and helpful for the solution of the above prob-
lems to consider at the same time primitive representations:
A representation σ : K −→ L is called primitive, if L ∩ (F · σ(K)) = σ(K), where
F · σ(K) is the F -subspace of V generated by σ(K) (in particular, if F = Q and
t ∈ Z, a vector x ∈ L representing t is a primitive representation if x

a 6∈ L for
a ∈ Z \ {±1}). The Hasse-Minkowski local-global principle and Siegel’s main theo-
rem are valid for primitive representations too.

We will denote by r∗(L, K) the number of primitive representations of K by L, by
q∗n(L) the set of lattices of rank n primitively represented by L and by qn(gen L)
(resp. q∗n(gen L)) the set of lattices of rank n represented (primitively) locally ev-
erywhere by L (and hence by some lattice in the genus of L).

For c > 0 we will say that K is represented by L (or by the genus of L) with
imprimitivity bounded by c, if there is a representation σ : K −→ L (respectively
σ : K −→ L′ for some L′ in the genus of L) such that

(1.8) (L ∩ (F · σ(K)) : σ(K)) ≤ c

(resp. the same inequality with some L′ ∈ gen L in place of L).

The Hasse-Minkowski local-global principle implies that K (of the right signatures
at the archimedean places) is represented by gen(L) with imprimitivity bounded by
c if and only if for all nonarchimedean v there are local representations σv : Kv −→
Lv such that the product of the corresponding local indices is bounded by c (since
Kv is unimodular and hence maximal at almost all v this product is always a finite
product).

We write qn,c(L) resp. qn,c(gen L) for the set of lattices of rank n that are repre-
sented by L with imprimitivity bounded by c. In the case n = 1 (to which we will
restrict attention in most of this article) we will omit the subscript n in the above
notations and simply write q(L), qc(L) etc.

2. Local densities

The problem of computing the local densities at a place v has in principle been
completely solved by Hironaka and Sato for non-dyadic v (2 ∈ o∗Fv

) in [21]. The
formulae given there are explicit but rather complicated. Yang [71] gives explicit
formulae for rk(K) ≤ 2 with v non-dyadic and rk(K) = 1 with oFv

= Z2, which are
much easier to handle. Katsurada gives an explicit formula for the case that L is
a sum of hyperbolic planes in [35] and recursion formulas in [33] and (jointly with
Hisasue) in [34]; these results lead to an explicit formula for the Fourier coefficients
of Siegel-Eisenstein series in [35] and to rationality results for certain power series
attached to local densities.

The most complete textbook reference on local densities is [40]. For our present
purpose we note here that in Theorem 5.6.5 of [40] it is shown that the local density
αv(L,K) can be bounded from below as

(2.1) αv(L,K) ≥ c
rk(K)+1−rk(L)
1 · c2(L, v)

for K that are locally represented by L with imprimitivity bounded by c1, where
c2(L, v) depends only on L (and rk(K)).
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An analogous estimate

(2.2) αv(L,K) ≥ c3(L, v)

is valid for all K with αv(L, K) 6= 0 if the Witt index ind(FvL) of FvL is ≥ rk(K)
by Theorem 5.6.5 of [40]; this can also be concluded from the estimate (2.1) since
in that case it is easy to show that Kv is represented by Lv with imprimitivity
bounded by some constant depending only on Lv (more precisely, on the index of
Lv in a maximal lattice on FvL). We notice that ind(FvL) ≥ rk(K) is always true
for rk(L) ≥ 2 · rk(K) + 3.

To give explicit values for these constants c2(L, v), c3(L, v) for the v dividing dL is
a tedious matter.
A rough estimate for the value of c2(L, v) in terms of the level and the discriminant
of Lv has been given in [58] for the case rk(K) = 1, in the same case Hanke describes
in [18] a recursive procedure giving a good value for c2(L, v) depending on the local
isometry class of Lv but no explicit formula in terms of level and discriminant
of Lv. Since this procedure is easy to implement in a computer program, it is
probably the best method for use in experimental investigations (an implementation
for PARI/GP using modular forms data from William Stein’s program HECKE)
has been announced in [18]). With the help of Katsurada’s recursion formulas it
should not be too difficult to extend this procedure to higher rk(K), this is the
subject of diploma thesis work in the author’s group in Saarbrücken.

The remaining factors αv(L, K) for the v with Lv unimodular can be estimated
using Proposition 5.6.2, Lemma 5.6.10, Corollary 5.6.2 and Exercise 1 of Section
5 of [40] in such a way that one controls the infinite product

∏
v αv(L,K). When

one does this, one may obtain for rk(L) < 2rk(K) + 3 (apart from factors whose
product over all v converges to some fixed number independent of K) factors of
the type (1±N−1

pv
) for the p dividing det(Kv); their product can be bounded from

below by (dK)−ε for any ε.

If rk(L) = rk(K) + 2 one may obtain factors (1 − χv(pv)N−1
pv

)−1 for almost all v,
where χ =

∏
v χv is the quadratic character attached to the discriminant of the

orthogonal complement (FK)⊥ of FK in FL. Their product may be (ineffectively)
bounded by (dK)−ε as well by Siegel’s bound on L(s, χ) at s = 1.

The result is summarized in the following lemma:

Lemma 2.1. If rk(L) ≥ 2 · rk(K) + 3, there is a constant C > 0 (depending on L
and on rk(K)) such that

(2.3) r(gen L, K) ≥ C · (dK · (nL)−rk(K))(rk(L)−rk(K)−1)/2

holds for all non-degenerate K of fixed rank for which r(gen L,K) 6= 0.
If rk(L) ≥ rk(K) + 2 and if one restricts attention to K that are represented by
gen(L) with imprimitivity bounded by some fixed t, one has an estimate

(2.4) r(gen L,K) ≥ Cε,t ·NF
Q (dK · (nL)−rk(K))

rk(L)−rk(K)−1
2 −ε

for all ε > 0, where the constant Cε,t > 0 is not effective if rk(L) = rk(K) + 2 (due
to the possibility of a Landau-Siegel zero of a Dirichlet L-series).
If 2 · rk(K) + 1 ≤ rk(L) < 2 · rk(K) + 3, the condition on K of representability with
bounded imprimitivity is satisfied if one has either one of the following conditions:

• K is represented by Lv with imprimitivity bounded by some fixed tv for the
finitely many places v for which ind(FvL) < rk(K)

• For some fixed integer s one has ps
v 6 |det(Kv) for all v with ind(FvL) <

rk(K).
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In particular, if rk(K) = 1, this last condition restricts divisibility by those pv for
which Lv is anisotropic, and it becomes equivalent to representability of K by gen(L)
with imprimitivity bounded by some fixed t.

3. Indefinite lattices

We will not say much about indefinite lattices here and refer to [29] and the ref-
erences given there instead. The main tool in the arithmetic approach is here the
strong approximation theorem for the spin group [15, 14, 44] which implies that
for rk(L) ≥ 3 the isometry class of L is equal to its spinor genus for indefinite L, a
lattice (M, qM ) being in the spinor genus of L if it is isometric to a lattice in the
orbit of the image in OV (A) of the adelic spin group SpinV (A) under the covering
map

SpinV (A) −→ SOV (A).
Since computations for spinor genera can be reduced to a large extent to local
computations, the representation behaviour of indefinite lattices (L, q) is (thanks to
[45, 65] and subsequent work quoted in [25, 29], see also [69, 70, 68, 59]) completely
understood for rk(K) ≤ rk(L) − 3 and reasonably well understood for rk(L) = 3,
rk(K) = 1.

In the general case of rk(K) = rk(L) − 2 (and K nondegenerate) the results of
[45, 65, 24] imply that r(gen L,K) = µ(L,K) except for K for which the binary
space generated by the orthogonal complement of K belongs to a certain finite (and
usually rather small) set of spaces depending on L, but the knowledge about the
behaviour in these exceptional classes is still not satisfactory. There are interesting
results for the case of codimension 1 in [69, 70, 68], but again our knowledge in this
case is far from perfect.

4. Results for rk(K) = 1, F = Q

Restricting attention from now on to totally definite lattices (L, q), we summarize
first what is known about the most classical case, the case of representation of
numbers by a form (or lattice) over Z.

Theorem 4.1. (Kloosterman, Tartakovski)
Let (L, q) be integral positive definite with rk(L) = m ≥ 5. Then L represents all
sufficiently large numbers a in q(gen L). The same is true for m = 4 if one restricts
attention to a in qc(gen L) for some fixed c or (what is the same) for some fixed s
to the set

(4.1) {a ∈ q(gen L) | ps 6 |a if Lp is anisotropic}.
In both cases one has an asymptotic formula

(4.2) r(L, a) = r(gen L, a) + O(a
m
2 −1−δ)

for some δ > 0, with

(4.3) r(gen L, a) ≥ C · am
2 −1−η

for all η > 0, for some constant C(η) for all a in the respective subset of q(gen L),
where the additional η appears only for m = 4.

This theorem has been proved for diagonal forms by Kloosterman in his dissertation
(Groningen 1924) for m ≥ 5 and in [42] for m = 4 with an error term

(4.4) O(a
m
4 +ε) + O(a

m
2 −1− 1

4+ε) for m ≥ 5

and with an error term

(4.5) O(m
17
18+ε) for m = 4
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using the Hardy-Littlewood-Ramanujan circle method (where of course the main
term is not yet identified as Siegel’s average, but arises as some multiple of a

m
2 −1

times the singular series). Tartakovski generalized it to arbitrary quadratic forms
in [63], for a modern version of this proof see [31].

It is nowadays usually proved using modular forms theory: With

(4.6) ϑ(L, z) := ϑ(L, q, z) =
∞∑

a=0

r(L, q, a) exp(2πiaz)

and ϑ(gen L, z) := ϑ(gen L, q, z) the corresponding weighted average over the genus,
it is known that ϑ(gen L, z) and ϑ(L, z) are modular forms of weight k = m

2 and
quadratic character for the group Γ0(N) ⊆ SL2(Z), where N is the level of (L, q).

Since the difference ϑ(gen L, z) − ϑ(L, z) is a cusp form, one can apply estimates
for Fourier coefficients of cusp forms to bound the error term. This gives an error
term

(4.7) O(σ0(a) · am
4 −

1
2 ),

if m is even (by Deligne’s proof of the Ramanujan-Petersson conjecture) and

(4.8) O(a
m
4 −

2
7+ε) for odd m ≥ 5

by Iwaniec’s estimate [30] for Fourier coefficients of cusp forms of half integral
weight (extended from square free integers to all integers by using the Shimura
correspondence).

That ϑ(gen L, z)−ϑ(L, z) is a cusp form, is usally mentioned without proof; it can
easily be proved by using the fact that the value of the theta series of L at a cusp is
expressed (using the transformation formula for theta series) by a Gauss sum over
a quotient L/cL for some c and hence depends only on the congruence properties
of (L, q), i.e. on the genus.

The implied constants in these estimates did not receive much attention; only quite
recently the increased interest in explicit and effective results lead to some work
concerning their values. In particular, continuing work of Fomenko [16] the case
m = 4 was studied in [58], where the local densities were estimated from below and
the coefficients of the cuspidal part

ϑ(L, z)− ϑ(gen L, z)

of the theta series were estimated by computing a bound for the Petersson norm of
this cusp form. The result obtained was:

Proposition 4.2. Let a be primitively represented by all Lp, rk(L) = 4. Then a is
represented by L if

(4.9)
ϕ(a)

a1/2σ0(a)
≥ 6.418

∏
p|N

Cp

holds, where

(4.10) Cp = N5
p

p2 − 1
2

·
√

(1 +
1
p
)

in general (with Np denoting the p-part of the level N of L),

(4.11) Cp = N9/2
p

(1 + 1
p )3/2

2
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if p2 - N,

(4.12) Cp = N2
p · (1 +

1
p
)3/2

if p2 - dL.

A different approach was taken by Hanke in [18]. There the densities are bounded
for a given L by the recursive algorithm mentioned before, and for the cuspidal part
enough Fourier coefficients are determined by computer to be able to express this
cusp form explicitly as a linear combination of Hecke eigenforms, using W. Stein’s
database of modular forms.
The resulting estimates for individual cases give in these cases slightly sharper
bounds for representation than in [58] but do still require additional considerations
if one wants to determine q(L) explicitly.

In the special case of the quadratic form f(x, y, z, w) = x2 + 3y2 + 5z2 + 7w2 e.g.,
Hanke proves first that all integers ≥ 1012 are represented by f ; since this bound is
still too large to examine the numbers below it exhaustively, he uses arguments in-
volving ternary sublattices in order to answer (affirmatively) the classical question
whether f represents all integers except the known exceptions 2 and 22.
Work on obtaining estimates for m = 4 that are practically usable continues.

The qualitative version of the Theorem of Kloostermann/Tartakovski, i.e. the
statement that every sufficiently large integer that is represented by L locally ev-
erywhere (and is not divisible by a high power of a prime p with Lp anisotropic if
rk(L) = 4) is represented by L, was proved by a completely different method in the
1972 lecture notes of Kneser that underly [46]. His method is purely arithmetic and
uses the strong approximation theorem for the Spin group to reduce the problem
to the study of rational representations whose denominator is a bounded power of
a single prime. It has been shown by Hsia and Icaza in [26] that the bound for
sufficiently large integers can be made explicit with this method, with an example
giving a bound of ∼ 1010 for a lattice of rank 5 and level 4.

The case m = 3 is more difficult; in particular, it is known that even with the
restriction on a from Theorem 4.1 there exist L for which there are infinite families
of numbers represented by gen L but not by L.

A result of Duke [11] gives an asymptotic formula for r(L, a), when a is restricted
to square free integers. For general a the problem arises that there are cusp forms
of weight 3/2 whose a-th Fourier coefficient grows as fast as a1/2 (which is the order
of growth of the main term r(genL, a)), but only for a tending to infinity in one of
finitely many square classes. In order to deal with this behaviour one has to take
into account the effects caused by the representation behaviour of spinor genera
that was mentioned in Section 2.

More precisely, the situation is as follows:
If one denotes by r(spn L, a) the weighted average of the r(Li, a) for the lattices Li

in the spinor genus of L, then by [45, 65] one has

(4.13) r(gen L, a) = r(spn L, a)

for all a outside a finite set of square classes

(4.14) tjZ2 = {tjn2 | n ∈ Z \ {0}},
these are called the spinor exceptional classes; the same is true (with the same
square classes) for numbers of primitive representations. For each of these square
classes, the set of numbers that are in q(gen L), but are not represented by all spinor
genera in the genus (the spinor exceptions of the genus) has been determined in



REPRESENTATION BY INTEGRAL QUADRATIC FORMS - A SURVEY 9

[53], the same problem for primitive representations has been solved in [13], both
of these exceptional sets are in general infinite.

Writing

(4.15) ϑ(spn L, z) :=
∞∑

a=0

r(spn L, a) exp(2πiaz),

one has by [55] that

(4.16) ϑ(L, z)− ϑ(spn L, z)

is a cusp form of weight 3
2 whose Shimura lifting is cuspidal. For such cusp forms

of weight 3/2 the growth of the Fourier coefficients can be estimated using [11]
and the Shimura lifting, which gives an asymptotic formula of the same type as
in Theorem 3.1 (with an error term O(a

1
2−

1
28+ε)) for all a outside the exceptional

square classes [12].

If there is only one spinor genus in the genus, one is done at this point; since it is
known [44, 23] that this is the case if the discriminant is not divisible by 27 and
not by any p3 for odd primes p, we are finished here for L of small discriminant.
If there are several spinor genera, a more detailed analysis [12, 54, 57] yields the
following result inside the exceptional square classes:

Theorem 4.3. [57] If rk(L) = 3 and a is restricted to numbers in q(gen L) not
divisible by pr (r fixed) for the primes for which Lp is anisotropic, one has:
If a is sufficiently large, then a is represented by all lattices in the genus of (L, q)
unless one of the following holds

• a is a spinor exception. In this case a is represented by exactly half the
spinor genera in the genus of L, and it is represented by all the classes in
these spinor genera.

• a is of the form a′p2, where a′ is a spinor exception and p is a prime that
is inert in the imaginary quadratic extension

(4.17) E = Q(−2adetL)

of Q. In this case a′ is represented by exactly half the spinor genera in the
genus of L and a = a′p2 is represented precisely by those classes in this half
of the spinor genera that represent a′ and by all lattices in the other half of
the spinor genera.

In particular, if there is a spinor exceptional integer a′ for the genus of L that is
represented by spn(L) but not by L (so a′ is below the bound for being sufficiently
large), then there are infinitely many integers a′p2 with p prime that are not repre-
sented by L.

An example for the behaviour of this theorem is the quadratic form

(4.18) 4x2 + 48y2 + 49z2 + 48yz + 4xz

discussed in [57]; it does not represent any p2 where p ≡ −1 mod 3 is a prime al-
though the form x2 + 48y2 + 144z2 in the same spinor genus represents all these
numbers (but not primitively).

We will come back to the proof of this theorem in the next section where we discuss
its generalization to the number field case. A different proof, using a refined anal-
ysis of the cusp form ϑ(L, z) − ϑ(spn L, z) and of its Shimura lifting has recently
been announced by Hanke [19].

Both methods of proof lead in fact to an asymptotic formula for the numbers not
excluded by one of the conditions of the theorem; in fact one can show that all
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those numbers are represented by each spinor genus in the genus with not too bad
imprimitivity (but not necessarily with bounded imprimitivity), which allows to
give a lower bound for r(spn L, a) using results of [54].

It should be mentioned that the bound for an integer to be sufficiently large in
Theorem 4.2 can at present not be made effective without using the generalized
Riemann hypothesis since the estimate of the main term involves an estimate from
below on the value L(1, χD) of a Dirichlet series in dependence of the conductor D
of χD.

Even if one admits the Riemann hypothesis and makes optimistic assumptions on
bounds for the error term, the bound for “sufficiently large” in the above theorem
that one obtains is not of a feasible size, as has been remarked in [51]. Ono and
Soundararajan use in that article a different method (assuming additional Riemann
hypotheses on L functions attached to elliptic curves) in order to prove that the
numbers 3, 7, 21, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391, 679, 2719 are
indeed the only numbers that are represented locally everywhere but not globally
by the Ramanujan form x2+y2+10z2. Their method has recently been generalized
by Reinke ([52]) to give similar results for x2 + y2 + 7z2 and some related forms.

Another remarkable special result on representation numbers is the formula of S.
Milne and K. Ono [49, 50] for the number of representations of a number n a sum
of 4s2 or 4s2 + 4s squares (for s ∈ N). This uses totally different methods; Ono’s
proof relies on identities between particular modular forms.
There is also a vast literature proving formulae for representation numbers of indi-
vidual quadratic forms by identifying the cuspidal part of the theta series explicitly
as a cusp form whose coefficients one can express in some other way; we don’t go
into details on this here.

5. Results for rk(K) = 1, F a number field

Before we review the available results in the number field situation we make a few
preliminary remarks:

• If the lattice K to be represented is not free, it is of the form ax with
a (fractional) ideal a of oF . Instead of considering r(L,K) we can then
consider r(a−1L, oF x) and reduce to the situation of a free lattice K, i.e., of
representation of numbers by a (not necessarily free) lattice L with n(L) =
q(L)oF not necessarily equal to oF .

• If n(L) = q(L)oF 6= oF , the theta series will not be a modular form for
a group of type Γ0(N) but for a type of congruence group that is locally
everywhere conjugate to this type. This doen’t change the analytic argu-
ments.

• We will call a number t ∈ F square free relative to L if t · (n(L))−1 is not
divisible by the square of an integral ideal.
In particular, if K = oF x with q(x) = t and t is square free relative to
L then all representations of K by a lattice of the same norm as L are
primitive.

• The fact that the difference of theta series of lattices in the same genus is
a cusp form has been proved in the number field case by Walling [64].

It appears that the analogue of Theorem 4.1 for a totally definite integral quadratic
form over the integers of a totally real number field has never been formally stated
as a theorem.

The qualitative version has been extended to the number field situation in [27, 22]
and appears to be the first definitive statement on the question in the literature. On
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the other hand, based on Kloosterman’s investigation of theta series for the number
field case [43] and on Siegel’s theorem, Gundlach states in the introduction of [17]
that the determination of the representation numbers of totally definite integral
quadratic forms in the number field case will be accomplished if one can prove an
estimate on the Fourier coefficients of cusp forms, notes that the trivial estimate
|aν | = O((N(ν))k/2) for forms of weight k will suffice if rk(L) > 4 and proves the
required estimate

(5.1) |aν | = O(N(ν)3/4+ε)

for the case k = 2, i.e., rk(L) = 4, so we may assume that he was aware of the
validity of Theorem 4.1 for the number field case.

A possible explanation for the situation is that Kloosterman in [43] (still not having
Siegel’s main theorem at his disposal) stated that the evaluation (and estimation)
of the singular series in the main term was very complicated and that after Siegel’s
work this question was considered as settled and as requiring no further formal
statements.

Assuming this we state

Theorem 5.1. [43, 62, 17]
The analogue of Theorem 4.1 for r(L,K), L totally positive definite integral of rank
m ≥ 4 over the integers oF of a totally real number field, K 1-dimensional over oF ,
is true for all K with NF

Q (dK) large enough (and satisfying the divisibility condition
for the anisotropic primes if rk(L) = 4).

The error term can here (by [36]) be taken to be O(NF
Q (dK)

m
4 −

7
18+ε) for even m

(which is 11
18 + ε for m = 4) and to be

(5.2) O(NF
Q (dK)

m
4 −

18
65+ε)

by the new estimate of Cogdell, Piatetski-Shapiro and Sarnak announced in [9] for
odd m ≥ 5 and K (or a) square free relative to L. Since for odd m ≥ 5 the trivial
estimate O(NF

Q (dK)
m
4 ) is sufficient, we don’t go into detail how to use the Shimura

correspondence in order to prove the better bound for square free K to be true for
all K (there are some tricky points for dK highly divisible by primes dividing the
level of L).

In the case rk(L) = 3 there is the new result by Cogdell, Piatetski-Shapiro and
Sarnak announced in [9] (which generalizes the result of Duke mentioned in Section
4):

Theorem 5.2. (Cogdell, Piatetski-Shapiro, Sarnak)
Let F be totally real, (L, q) an integral oF -lattice of rank 3 with q totally positive
definite. Then for all a ∈ oF square free relative to L that are represented locally
everywhere by L one has the asymptotic formula (for all η > 0)

(5.3) r(L, a) = r(gen L, a) + Oη(NF
Q (a)

123
260+η)

with

(5.4) r(gen L, a) ≥ Cε(NF
Q (a)

1
2−ε) for all ε > 0.

with some constant Cε.
In particular, all sufficiently large a that are square free relative to L are represented
by L if and only if they are represented by L locally everywhere
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Proof. As in [9], this is obtained from the L-function estimate proved there by using
the generalized Waldspurger formula

(5.5) |aν |2 << N(ν)
1
2 L(

1
2
, π ⊗ χν)

of Baruch and Mao [1] for the squares of the Fourier coefficients with square free
index of a Hilbert modular form of weight 3

2 .

Note that the adelic setting in which Baruch and Mao work implies that our notion
of “square free relative to L” can not cause problems. �

In [9], particular attention is given to the classical problem of sums of three squares.
That the result given there (all sufficiently large totally positive square free integers
that are sums of three squares locally everywhere are sums of three squares globally)
can not directly be generalized to arbitrary totally positive numbers can be seen
from the following example:

Example 5.3. Let F = Q(
√

35). Then no number of the form 7p2 where p is a
prime that is a quadratic residue modulo 7 is a sum of three integral squares in oF ,
although 7 is a sum of three integral squares locally everywhere.

Proof. Let L be the lattice corresponding to the sum of three squares. Since L
is unimodular at all odd places we have to check whether 7 is represented by Lv2

over oFv2 , where v2 is the (ramified) place of F over 2. This is clear because
7 = ( 7√

35
)2 + ( 14√

35
)2, so 7 is represented locally everywhere.

The number of spinor genera in the genus of L is computed as in [44, 48]; notice
that unlike in the case of ground ring Z the genus of a lattice L can have several
spinor genera without dL being highly divisible by a prime.

We obtain from [44, 23] that the local spinor norm groups of L are

(5.6) Θ(SO(Lv)) = o×Fv
· (F×

v )2 for all nonarchimedean v

which implies that the set of spinor genera in gen(L) is in bijection with the el-
ements of the proper (or strict) ideal class group of F (i. e. the group of ideals
modulo principal ideals generated by a totally positive number) modulo the sub-
group generated by the squares of ideal classes.

The proper class group of F is easily seen to be of order 4, generated by the ideals
p5, p7 over (5) resp. over (7), the factor group by the group generated by the squares
of ideal classes has hence order 4 as well, and we see that we have four spinor gen-
era in the genus. (A computation of the genus with the help of the neighbouring
lattice algorithm shows that the spinor genus of L consists of 3 isometry classes,
while the other spinor genera have 3, 4, 4 isometry classes). The spinor exceptional
square classes are determined as in [45, 53], we find that there is precisely one such
class, the class 7 · (oFv

)2 associated to the extension E = F (
√
−7) of F , which is

unramified at all places, with p5 inert in E/F and p2, p7 split in E/F . It follows
from [53] that 7 is a spinor exception for gen L.

In order to determine whether 7 is represented by that half of the spinor genera
containing the spinor genus of L or by the other half of the spinor genera in the
genus we consider the rational representation 7 = ( 7√

35
)2 +( 14√

35
)2 from above. The

corresponding vector x is in all Lv except for v = v5 and v = v7.

The results of [10, 69] imply (since at v7 the local norm group is all of F×
v7

and at
the place v = v5 that is inert in E/F the index

(5.7) [oFv
x : oFv

x ∩ Lv]



REPRESENTATION BY INTEGRAL QUADRATIC FORMS - A SURVEY 13

is equal to 5) indeed 7 is not represented by the spinor genus of L. Since all places
v over a prime p with (p

7 ) = +1 are split in E/F , the local norm group of E at
these places is again all of F×

v , and by [53], 7p2 is spinor exceptional too and of
course represented by the same spinor genera as 7, hence not by any lattice in the
the spinor genus of L. �

On the positive side, the arguments necessary for the transition from square free
numbers a to arbitrary a have already been carried out in [56], we have

Lemma 5.4. Let L,F be as in Theorem 5.2, write

(5.8) ϑ(L, z)− ϑ(spn L, z) =
∑

ν>>0

aν exp(2πitr(νz))

forz ∈ HF , the upper half plane for F.
Then for all η > 0 and ν, n ∈ oF with ν square free relative to L one has

(5.9) |aνn2 | = O((N(n))
11
18+η),

where the implied constant does not depend on ν.

Proof. This is obtained from the theorem of [56] by inserting the Kim-Shahidi
bound [36] for Fourier coefficients of Hilbert modular forms of integral weight.

Notice that the dependence of the implied constant on ν from [56] can be removed
since it does only depend on the divisibility of ν by primes dividing the level of L
and can hence be replaced by a uniform constant if one assumes ν to be square free
relative to L.

Notice that in [56] a slightly modified version of the Shimura lifting is used; this
helps to avoid difficulties that arise at primes dividing the level if one tries to use
the Shimura correspondence directly. Notice also that in this way a problem in the
proof of [12] for numbers divisible by a large power of 2 can be avoided; this has
recently been remarked by Blomer [3]. �

Corollary 5.5. Let F be a totally real number field such that the factor group of
the proper ideal class group of F modulo the subgroup generated by the classes of
those prime ideals pv dividing 2, for which

Θ(SO(Lv)) = F×
v

holds, has odd order. Fix r ∈ N. Then every totally positive number a ∈ oF with
NF

Q (a) sufficiently large is represented by L provided it satisfies

• a ∈ q(Lp) for all p|2
• a is totally positive
• a is not divisible by pr for primes p|2 with Lp anisotropic.

Proof. The spinor norms Θ(SO(Lv)) for the nonarchimedean v not dividing 2 are
computed as above. For the dyadic v, one has from [23] that

Θ(SO(Lv)) = F×
v or Θ(SO(Lv)) = o×Fv

· (F×
v )2

holds, and the number of spinor genera is computed as in the previous example
to be the order of the above factor group of the proper ideal class group modulo
squares. Hence under the assumptions made the genus of L consists of a single
spinor genus, and a satisfying the conditions of the corollary is represented by L
locally everywhere.

The Lemma implies the truth of the assertion, given the estimate on r(gen L, a)
from Section 2. �
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Corollary 5.6. Let F be totally real, (L, q) a positive definite integral oF -lattice,
r ∈ N fixed. Then for sufficiently large integers a ∈ q(gen L) that are not divisible
by pr for p with Lp anisotropic, one has:
a is represented by all classes in the genus of L, unless one of the following condi-
tions holds:

• a is a spinor exception. In this case a is represented by exactly half the
spinor genera in the genus of L, and it is represented by all classes in these
spinor genera.

• There is a prime p inert in E/F , where E = F (
√
−2a · det(FL)), such

that a is a spinor exception for the genus of pL.
In that case a is represented by exactly half the spinor genera in the genus
of pL, and a is represented by Li ∈ gen L if and only if either

– a is not represented by the spinor genus of pLi.
– a is represented by pLi

(Notice that if a is represented by the spinor genus of pLi and if the norm of
p is large, the norm of a need not be “sufficiently large” with respect to the
genus of pLi, hence a may be represented by some isometry classes in the
spinor genus of pLi but not by the given pLi itself. The assertion implies
that in that case a is not represented by Li as well.)

Proof. As in [57] one can first establish a preliminary bound c1 such that all numbers
of norm ≥ c1 that are primitively represented by some spinor genus in the genus
are indeed represented by all lattices in that spinor genus. To obtain this, we use
for the error term r(spn Li, a) − r(Li, a) the bound from Lemma 5.4, and for the
main term r(spn Li, a) the fact that we can bound r(spn Li, a) from below (using
the results from [54]) if a is primitively represented by the spinor genus of Li. We
notice here that Korollar 2 of [54] is stated only for F = Q but continues to be true
without that restriction, in the slightly sharper form that replaces representation
numbers r∗(am2, Lj) by r∗(a,m−1Lj) and studies r∗(a,m−1Lj) for arbitrary (non
principal) ideals m.
We can then fix a larger bound c > c1 such that all a of norm ≥ c in qr(gen (L))
that do not satisfy one of the conditions given in the corollary are represented by
all spinor genera in the genus of L with imprimitivity bounded by some c2 with
c ≥ c1c

2
2. From this we get that a is represented by all classes in the genus of L by

applying the result just established for numbers of norm ≥ c1 that are represented
primitively by some spinor genus.
For the exceptional cases, the case covered by the first condition given is clear. If
a satisfies the second condition above it has representations that are primitive at p
by lattices in precisely half the spinor genera in gen L, namely by those spn(Li) for
which a is not represented by spn(pLi) (this follows from [13]), and the remaining
imprimitivity of these representations can again be bounded by c2 if this constant
was chosen large enough. As in the beginning of this proof we can then show that
a is represented by all lattices in those spinor genera.
On the other hand, for those spn Li for which a is already represented by spn(pLi),
all representations by lattices in the spinor genus of Li are already in pLi, hence
in those spinor genera the representation behaviour for Li is just the same as that
for the smaller lattice pLi. In particular, if the norm of p was large enough it may
happen that a is not represented by all lattices in the spinor genus of pLi and hence
also not by all lattices in the spinor genus of Li. �

Not much has been obtained so far in the direction of effective results in the number
field case. As a first step on the modular forms side of the problem, Wichelhaus
[67] has given an effective and practically usable criterion for testing two Hilbert
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modular forms for equality. The work on computing tables of modular forms is
still rudimentary. The computation of bounds for the local densities, on the other
hand, should be possible essentially in the same way as over Z.

6. The case F = Q, rk(K) ≥ 2

In this case not too much has changed since Kitaoka’s report [41]. One has an
asymptotic formula for rk(L) ≥ 2rk(K) + 3 with the minimum m(K) of K going
to infinity under the additional condition m(K) > C(dK)

1
n for some constant C

if rk(K) ≥ 3, and without this additional condition if rk(L) ≥ 4rk(K) + 4. An
asymptotic formula of the same type has also been proven for rk(L) = 6, rk(K) = 2
under the additional condition m(K)32.2 < dK or upon restriction to K that are
related to fixed K0 by orthogonal similitudes of growing norm.

The crux of the matter in the analytic approach is that for rk(K) ≥ 2 it does not
suffice to estimate Fourier coefficients of cusp forms, since the difference of theta
series of degree ≥ 2 of lattices in the same genus is not cuspidal in general.
The estimates mentioned above have been obtained by giving a general estimate
for Fourier coefficients of Siegel modular forms vanishing in all 0-dimensional cusps
with a version of the circle method [38] and by using formulas for Fourier coefficients
of Klingen-Eisenstein series [39, 4] in order to obtain estimates [37, 6]. It is unclear
whether there is much improvement possible. If rk(L) ≤ 2rk(K) + 2, the relevant
Eisenstein series of Klingen type have to be defined by analytic continuation and
matters become even more difficult. Bounds for Fourier coefficients of cusp forms
are quite a bit better, see [7, 5] and the references given there.

The qualitative result of Hsia, Kitaoka, Kneser [27], whose proof is a purely arith-
metic extension of Kneser’s argument for the case rk(K) = 1, guarantees that for
rk(L) ≥ 2rk(K)+3 all K of sufficiently large minimum are represented by L if they
are represented locally everywhere. This has been extended to representations with
congruence conditions by Jöchner and Kitaoka [32] and to rk(L) = 6, rk(K) = 2
by Jöchner. Chan, Estes and Jöchner [8] extended it to rk(L) ≥ rk(K) + 3 under
additional assumptions on fast growth of the successive minima of K and on prim-
itive representation locally everywhere.
All these arithmetic proofs carry directly over to the number field situation, a gen-
eralization to hermitian forms has been proved by Hsia and Prieto-Cox [28].
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[62] C. L. Siegel: Über die analytische Theorie der quadratischen Formen III, Ann. Math., Prince-

ton, (2) 38, 212-291. 1937.
[63] W. Tartakovski: Die Gesamtheit der Zahlen, die durch eine positive quadratische Form

F (x1, . . . , xs) (s ≥ 4) darstellbar sind, IZv. Akad. Nauk SSSR. 7 (1929), pp. 111 - 122,

165 - 195
[64] L. Walling: A remark on differences of theta series. J. Number Theory 48 (1994), no. 2,

243–251.
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