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Introduction

Starting from the work of Garrett and of Piatetskii-Shapiro and Rallis on integral
representations of the triple product L-function associated to three elliptic cusp
forms the critical values of these L-functions have been studied in recent years
from different points of view. From the classical point of view there are the works
of Garrett [9], Satoh [22], Orloff [21], from an adelic point of view the problem
has been treated by Garrett and Harris [10], Harris and Kudla [12] and Gross and
Kudla [11]. Of course the central critical value is of particular interest. Harris
and Kudla used the Siegel-Weil theorem to show that the central critical value is
a square up to certain factors (Petersson norms and factors arising at the bad and
the archimedean primes); the delicate question of the computation of the factors for
the bad primes was left open. In the special situation that all three cusp forms are
newforms of weight 2 and for the group Γ0(N) with square free level N > 1 Gross
and Kudla gave for the first time a completely explicit treatment of this L-function
including Euler factors for the bad places; they proved the functional equation and
showed that the central critical value is a square up to elementary factors (that are
explicitly given).
We reconsider the central critical value from a classical point of view, dealing with
the situation of three cusp forms f1, f2, f3 of weights ki (i = 1, . . . , 3) that are new-
forms for groups Γ0(Ni) with N = lcm(Ni) a squarefree integer 6= 1. The weights ki
are subject to the restriction k1 < k2 + k3 where k1 ≥ max(k2, k3); the distinction
whether this inequality holds or not played an important role in [11] and [12] too.
We start from the simplest possible Eisenstein series E of weight 2 for Γ(3)

0 (N) on
the Siegel space H3 (“summation over C ≡ 0 mod N”). After applying a suitable
differential operator (depending on the weights ki) to E we proceed in a way similar
to Garrett’s original approach: We restrict the differentiated Eisenstein series in a
first step to H1×H2 and integrate against f1, the resulting function on H2 is then
restricted to the diagonal and integrated against f2, f3. The necessary modifica-
tions to Garrett’s coset decompositions (that were for level 1) are not difficult (for
the first step they have already been carried out in [2]). The actual computation
of the integral is elementary and needs only standard results from the theory of
newforms. It yields a Dirichlet series (2.41) whose Euler product decomposition
is then computed in Section 3. The cases that p divides one, two or all three of
the levels Ni or is coprime to N must all be treated separately, which makes the
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discussion somewhat lengthy. However, the actual computation in each of these
cases is again fairly straightforward. In Section 4 we show that the Euler factors
defined in Section 3 are the “right ones” by proving the functional equation. In
order to exhibit the central critical value as a square (up to elementary factors) we
follow a similar strategy as [12]: the Eisenstein series E at s = 0 is expressed as
a linear combination of genus theta series of quaternary positive definite integral
quadratic forms. At most one of these genera (depending on the levels Ni and
the eigenvalues of the fi under the Atkin-Lehner involutions) contributes to the
integral. Eichler’s correspondence between cusp forms for Γ0(N) and automorphic
forms on definite quaternion algebras allows then to express this contribution as an
(explicitly computable) square of an element of the coefficient field of the fi; this
element arises as value of a trilinear form on a space of automorphic forms on the
quaternion algebra and may be interpreted as value of a height pairing similar to
[11].
It may be of interest to compare the advantages of the different methods applied to
this problem. Although the adelic method makes it easier to obtain general results,
the explicit computations needed here appear to become somewhat simpler in the
classical context. In particular, by making use of the theory of newforms and of
orthogonality relations for the theta series involved from [2] we can use the same
Eisenstein series E independent of the fi. This is of advantage since the pullback
formalism is especially simple for this type of Eisenstein series and leads to the
remarkably simple computations in Sectiions 2 and 3.
Most of this article was written while both authors were guests of the MSRI in
Berkeley during its special year on automorphic forms. We wish to thank the MSRI
for its hospitality and financial support. R. Schulze-Pillot was also supported by
Deutsche Forschungsgemeinschaft during a visit of one month at MSRI and was a
guest of the Max-Planck-Institut für Mathematik in Bonn in the final stage of the
preparation of this manuscript.

Notations We use some standard notations from the theory of modular forms,
in particular, we denote by Hn Siegel’s upper half space of degree n (the sub-

script n = 1 will be omitted); for functions f on H and g =
(
a b
c d

)
we

use (f |k g)(z) = det(g)
k
2 (cz + d)−kf(g < z >) and similarly for the action of

double cosets (Hecke operators). The operators T (p) and U(p) however will be
used in their standard normalisation. The space of cusp forms of weight k for

Γ0(N) =
{(

a b
c d

)
∈ Sl2(Z) | c ≡ 0 mod N

}
will be denoted by [Γ0(N), k]0.

1. Differential Operators

We have to deal with two types of embeddings of products of upper half spaces into
H3 namely

ι12 :

 H×H2 −→ H3

(z, Z) 7−→
(
z 0
0 Z

)
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and

ι111 :


H3 −→ H3

(z1, z2, z3) 7−→

 z1

z2

z3


Without any danger of confusion we may denote by the same symbols the corre-
sponding “diagonal” embeddings of groups:

ι12 : Sl2 × Sp(2)→ Sp(3) and ι111 : Sl32 → Sp(3)

One might try to apply Ibukiyama-type differential operators [16] in the integral
representation of the triple L-functions (equivariant for Sl2 × Sl2 × Sl2 ↪→ Sp(3)).
However in the actual computation of the integral, it is more convenient to have
equivariance for Sl2 × Sp(2) ↪→ Sp(3). Therefore we use Maaß-type operators (see
[20]) and the holomorphic differential operators introduced in [6]; we describe these
operators here only for Sp(3), but of course they also make sense for Sp(n).

We start from a natural number r and three (even) weights k1, k2, k3 with k1 =
max{ki} and satisfying the condition

(1.1) k2 + k3 − k1 ≥ r
Then we define nonnegative integers a, b, ν2, ν3 by

(1.2)

r + a = k2 + k3 − k1

k1 = r + a+ b
k2 = r + a+ ν2

k3 = r + a+ ν3

Then we have

(1.3) b = ν2 + ν3

We use two types of differential operators on H3. The first one is the Maaß operator

(1.4)

Mα = det(Z − Z̄)2−α det(∂ij) det(Z − Z̄)α−1

=
3∑

µ=0

ε3(α)
εµ(α) · tr

((
Z − Z̄

)[µ] · (∂ij)[µ]
)

= ε3(α) + · · ·+ det(Z − Z̄) · det(∂ij)

where (following [20])

εµ(α) =
{

1 µ = 0
α · (α− 1

2 ) · · · (α− µ−1
2 ) µ > 0

and for a matrix A of size n we denote by A[µ] the matrix of µ× µ-minors.
We put

M[ν]
α =Mα+ν−1 ◦ · · · ◦Mα+1 ◦Mα

We recall from [20] that

(1.5) M[µ]
α (f |α,β g) =

(
M[µ]

α f
)
|α+µ,β−µ g

for all g =
(
a b
c d

)
∈ Sp(3,R) with

(f |α,β g)(Z) = det(cZ + d)−α det(cZ + d)−βf(g < Z >).

Here α and β are arbitrary complex numbers, but it would be sufficient for us to
take α = r + s, β = s with s ∈ C.
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The second type of differential operators was introduced in [6]: It maps scalar-
valued functions on H3 to vector-valued functions , more precisely to C[X2, X3]b
-valued functions on H×H2 ↪→ H3 where C[X2, X3]b denotes the space of homo-
geneous polynomials of degree b; we realize the symmetric tensor representation
σb of Gl(2,C) on this space in the usual way. The operator L(b)

α as defined in [6]
satisfies

(1.6)

(
L(b)
α f

)
|wα+b,β g1 = L(b)

α (f |α,β ι1,2(g1,14)) (ι1,2(w,Z))(
L(b)
α f

)
|Zα,β,σb g2 = L(b)

α (f |α,β ι1,2(12, g2)) (ι1,2(w,Z))

for all g1 ∈ Sl2(R) and all g2 ∈ Sp(2,R), where the upper indices Z and w indicate
which variable is relevant at the moment and((

L(b)
α f

)
|Zα,β,σb g2

)
(ι1,2(w,Z)) =

det(cZ + d)−α det(cZ + d)−βσb(cZ + d)−1
(
L(b)
α f

)
(ι12(w, g2 < Z >))

This differential operator can be described explicitly as follows:

(1.7) L(b)
α =

1
α[b]

ι?
∑

0≤2ν≤b

1
ν!(b− 2ν)!(2− α− b)[ν]

· (D↑D↓)ν · (D −D↑ −D↓)b−2ν

with ι? denoting the restriction to H×H2 ↪→ H3,

D↑ = ∂11

D↓ =
∑

2≤i,j≤3

∂ijXiXj

D −D↑ −D↓ = 2 (∂12X2 + ∂13X3)

and

α[ν] =
Γ(α+ ν)

Γ(α)
=
{

1 ν = 0
α(α+ 1) . . . (α+ ν − 1) ν > 0

We should remark here that L(b)
α has coefficients, which are rational functions of α

with no poles for <(s) > 0.

We shall use the operators

D(a,b)
α := L(b)

α+a′ ◦M
[a′]
α

with 2a′ = a and D?(a,b)α defined by

D?(a,b)α f =
(
D(a,b)
α f

)
ι111(z1, z2, z3)

Denoting by D?(a,ν2.ν3)
α the operator which picks out of D?(a,b)α its Xν2

2 Xν3
3 - com-

ponent, we get a decomposition

(1.8) D?(a,b)α f =
∑

ν2+ν3=b

(
D?(a,ν2.ν3)
α f

)
Xν2

2 Xν3
3

with (
D?(a,ν2.ν3)
α f |α,β ι111(g1, g2, g3)

)
=
(
D?(a,ν2.ν3)
α f

)
|z1α+a′+b,β−a′ g1 |z2α+a′+ν2,β−a′ g2 |z3α+a′+ν3,β−a′ g3

for all (g1, g2, g3) ∈ Sl2(R)3.
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If f is a holomorphic function on H3, then

(y1y2y3)−a
′
· D?(a,ν2,ν3)

α (f)

is a nearly holomorphic function (in the sense of Shimura) of all three variables z1,
z2, z3 ∈ H.
To apply Shimura’s results on nearly holomorphic functions, it is more convenient
to use his differential operators δµα, which differ (in the one-dimensional case i.e. on
H) from the Maaß operators only by a factor constant ×yµ:

δα =
1

2πi

(
α

2iy
+

∂

∂z

)
δµα = δα+2µ−2 ◦ · · · ◦ δα

By elementary considerations about the degree of nearly holomorphic functions (as
polynomials in y−1) Shimura observed that nearly holomorphic functions on H are
linear combinations of functions obtained from holomorphic functions by applying
the operators δµα (at least if α is not in a certain finite set, for details see [24, lemma
7]. By the same kind of reasoning we get an identity
(1.9)

(y1y2y3)−a
′ · D?(a,ν2.ν3)

α

=
∑

0≤µ1,µ2,µ3≤a′
δµ1
α+a+b−2µ1

δµ2
α+a+ν2−µ2

δµ3
α+a+ν3−2µ3

Dα(a, ν2, ν3, µ1, µ2, µ3)

We understand that in (1.9) the operator δµi... acts with respect to zi, i = 1, 2, 3;
moreover Dα(. . . ) is a holomorphic differential operator mapping functions on H3

to functions on H×H×H. Following again the same line of reasoning as in lemma
7 [loc.cit], adapted to our situation, we easily get that the Dα(...) satisfy
(1.10)

Dα(a, ν2, ν3, µ1, µ2, µ3) (f |α,β ι111(g1, g2, g3))
= Dα(a, ν2, ν3, µ1, µ2, µ3)(f) |z1α+a+b−2µ1,β

g1 |z2α+a+ν2−2µ2,β
g2 |z3α+a+ν3−2µ3,β

g3

for all (g1, g2, g3) ∈ Sl(2,R)3 and all holomorphic functions on H3 (and hence also
for all C∞-functions). The upper indices zi on the right hand side of (1.10) indicate,
on which variable gi operates.
We have to remark here that Shimura‘s condition “k > 2r” in Lemma 7 [loc.cit] is
satisfied in our situation as long as α is non-real or

α+ a+ b > a
α+ a+ ν2 > a
α+ a+ ν3 > a

However the coefficients of the ∂ij on both sides of (1.9) are easily seen to be rational
functions of α, therefore (1.9) (and subsequent equations) are true for all α ∈ C as
rational functions of α.

It is crucial for us to see that in the identity (1.9) the “holomorphic part”, i.e.

Dα(a, ν2, ν3, 0, 0, 0)

is different from zero. For this purpose we consider (y1y2y3)−a
′ · D?(a,b)α as a poly-

nomial in ∂12, ∂13, ∂23. It is easy to see that this is a polynomial of total degree
3a′ + b, the component of degree 3a′ + b being given by

(1.11)
2b2a

′
(2i)3a′

(α+ a′)[b]b!
(∂12∂13∂23)a

′
(∂12X2 + ∂13X3)b
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In particular, this component is free of y−1
i and ∂ii, so it can only come from the

Dα(a, ν2, ν3, 0, 0, 0) with ν2 + ν3 = b

Now we define a polynomial Qα of the matrix variable S = St = (si,j)1≤i,j≤3 by

(1.12) Dα(a, b, ν2, ν3, 0, 0, 0)etrace(SZ) = Qα(S)es11Z11+s22Z22+s33Z33

By the same kind of reasoning as in [1, Satz 15] we see that by

(1.13) (x1,x2,x3) 7−→ Pr(x1,x2,x3) := Qr

 xt1x1 xt1x2 xt1x3

xt2x1 xt2x2 xt2x3

xt3x1 xt3x2 xt3x3


we get a polynomial function of (x1,x2,x3) ∈

(
C2r

)3 which in each variable is a
harmonic form of degree a+b, a+ν2 , a+ν3 respectively; more precisely, Pr defines
a non-zero element of

(1.14) (Ha+b(2r)⊗Ha+ν2(2r)⊗Ha+ν3(2r))O(2r)

For our investigation of the functional equation of triple L-functions we have to
modify Dα(a, b, ν2, ν3, 0, 0, 0) still further (we switch notation now from α to r+ s)
We consider the operator ∆ = ∆r,s(a, ν2, ν3) given by

(1.15) F 7−→ (y1y2y3)sDr+s(a, ν2, ν3, 0, 0, 0)
(
F × det(Y )−s

)
This operator (acting on functions on H3) is easily seen to satisfy

(1.16) ∆ (F |r ι111(g1, g2, g3)) = ∆(F ) |z1r+a+b g1 |z2r+a+ν2
g2 |z3r+a+ν3

g3

for all g1, g2, g3 ∈ Sl2(R). By the same kind of argument about nearly holomorphic
functions as above we get

(1.17)
∆r,s(a, ν2, ν3) =

∑
0 ≤ µ1 ≤ [a+b

2 ]
0 ≤ µ2 ≤ [a+ν2

2 ]
0 ≤ µ3 ≤ [a+ν3

2 ]

δµ1
r+a+b−2µ1

δµ2
r+a+ν2−2µ2

δµ3
r+a+ν3−2µ3

∆r,s(a, ν2, ν3, µ1, µ2, µ3)

with holomorphic differential operators ∆r,s(a, ν2, ν3, µ1, µ2, µ3) mapping functions
on H3 to functions on H×H×H. We should mention here that the differential
operators coming up in (1.17) do not have poles as long as r is positive and s is
non-real or Re(s) ≥ 0. Again the “holomorphic part” ∆r,s(a, ν2, ν3, 0, 0, 0) defines
(as in (1.12),(1.13) an element of

(Ha+b(2r)⊗Ha+ν2(2r)⊗Ha+ν3(2r))O(2r)

This space is known to be one-dimensional: By a result of Littelmann ([19], p.
145) the decomposition of Ha+ν2(2r)⊗Ha+ν3(2r) is multiplicity free and contains
Ha+b(2r)), hence there is a unique invariant line in the threefold tensor product.
There exists therefore a function c = cr(s) such that

(1.18) ∆r,s(a, ν2, ν3, 0, 0, 0) = cr(s)Dr(a, ν2, ν3, 0, 0, 0).

By comparing coefficients of (∂12∂13∂23)a
′
∂ν2

12∂
ν3
13 on both sides of (1.17) we get
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(1.19) cr(s) =
(r + a′)[b]

(r + s+ a′)[b]
=

Γ(r + a′ + b)
Γ(r + a′)

· Γ(r + a′ + s)
Γ(r + a′ + s+ b)

2.Unfolding the integral

For a squarefree number N > 0 and three cuspforms

f =
∑
af (n)e2πinz ∈ [Γ0(N), k1]0

φ =
∑
aφ(n)e2πinz ∈ [Γ0(N), k2]0

ψ =
∑
aψ(n)e2πinz ∈ [Γ0(N), k3]0

with k1, k2, k3 as in section 1 we want to compute the threefold integral A(f, φ, ψ, s),
defined by

(2.1)
∫ ∫

(Γ0(N)\H)3

∫
f(z1)φ(z2)ψ(z3)

(
D?(a,ν2,ν3)

(
G3
r,s

))
(ι111(z1, z2, z3))

× yk1+s−a′
1 yk2+s−a′

2 yk3+s−a′
3

3∏
i=1

dxidyi
y2
i

where G3
r,s is the Eisenstein series on H3 defined by

(2.2)

G3
r,s =

∑
M∈Γ3

∞\Γ3
0(N)

1 |r+s,s M

=
∑ ∗ ∗

C D

=M∈Γ3
∞\Γ3

0(N)

det(CZ +D)−r−s det(CZ̄ +D)−s

In the applications we shall need modified versions of the integral (2.1); it is appro-
priate to describe these here: We use the well-known fact (see e.g. [25, equation
(2.28)]) that holomorphic cusp forms are orthogonal to (C∞-)automorphic forms
in the image of the differential operators δ, therefore we may replace(

D?(a,ν2,ν3)
(
G3
r,s

))
(ι111(z1, z2, z3)) yk1+s−a′

1 yk2+s−a′
2 yk3+s−a′

3

in the integrand of (2.1) by(
Dr+s(a, ν2, ν3, 0, 0, 0)

(
G3
r,s

))
(ι111(z1, z2, z3)) yk1+s

1 yk2+s
2 yk3+s

3

or by

(2.3) cr(s)Dr(a, ν2, ν3, 0, 0, 0)
(
E3
r,s

)
(ι111(z1, z2, z3)yk1

1 yk2
2 yk3

3

where

E3
r,s(Z) = det(Y )s ·G3

r,s =
∑

M∈Γ3
∞\Γ3

0(N)

det(Y )s |r M

The actual computation of A(f, φ, ψ, s) is however most conveniently done using
the integral in the version of (2.1)
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2.1.The first integration
To understand the integration with respect to z1, it is better to consider first the
integral

(2.4) I(s) =
∫

Γ0(N)\H

f(z1)
(
D(a,b)
r+s G3

r,s

)
(ι1,2(z1, Z)) yk1+s−a′

1

dx1dy1

y2
1

× det(Y )s−a
′

with Z = X + iY ∈ H2. We recall from [2, Thm.1.1] that the double cosets

Γ∞\Γ3
0(N)/ι1,2

(
Γ0(N)× Γ2

0(N)
)

can be parametrized by the following set of representatives

(2.5) {gm | m ∈ N ∪ {0} ,m ≡ 0 mod N}

where

gm =


13 03

0 m 0
m 0 0
0 0 0

13


We split the integral (2.4) into the contributions of the double cosets (2.5):

(2.6) I(s) =
∑
m

Im(s)

It is easy to see that the double coset with m = 0 decomposes into left cosets as
follows {

ι1,2(γ, δ) | γ ∈ Γ∞\Γ0(N), δ ∈ Γ2
∞\Γ2

0(N)
}

Therefore its contribution to D?(a,b)G3
r+s,s is just

D?(a,b)r+s,s

(∑
γ,δ

1 |r+s,s ι1,2(γ, δ)

)
=
∑
γ,δ

D?(a,b)r+s (1) |z1r+s+a′+b,s−a′ γ |Zr+s+a′,s−a′,σb δ

It is obvious that

D?(a,b)r+s (1) =
{

0 b > 0
ε3(r + s)ε3(r + s+ 1) . . . ε3(r + s+ a′ − 1) b = 0

Unfolding the integral defining I0(s) we easily get (by the cuspidality of f) that

I0(s) = 0

(we omit the standard calculation)

For fixed m > 0, m ≡ 0 mod N the left cosets are given by (see [2, Thm1.2])

(2.7)
{
gmι1,2(γ, l(h)g | γ ∈ Γ0(N), h ∈ Γ[m]\Γ0(N), g ∈ C2,1(N)\Γ2

0(N)
}

where

Γ[m] = Γ0(N) ∩
(

0 m−1

−m 0

)
Γ0(N)

(
0 −m−1

m 0

)
,
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l = ι11 and C2,1 is the standard maximal parabolic subgroup of Sp(2) given by

C2,1 =




0 0 0




with
C2,1(N) := C2,1(Z) ∩ Γ2

0(N).
The summation over γ unfolds the integral for Im(s) to
(2.8)
Im(s) =∫
H

f(z1)
∑
h,g

D?(a,b)r+s (1 |r+s,s gm) |Zr+s+a′,s−a′,σb l(h)g · yk1+s−a′
1

dx1dy1
y2 × det(Y )s−a

′

By lemma 4.2 of [6] and (1.4) we have

(2.9)
D?(a,b) (1 |r+s,s gm)
= 2−a(2r + 2s− 2)[a](r + s)[a′]L(b)

r+s+a′ (1 |r+s+a′,s−a′ gm)
= A(r + s, b) · (1−m2z1Z

∗)−r−s−a
′−b · (1−m2z̄1Z̄

∗)−s+a
′ · (mX2)b

where for Z ∈ H2 we denote by Z∗ the entry in the upper left corner of Z and

A(s, b) = (−1)b · 2−a(2s− 2)[a](s)[a′](2s+ a− 2)[b]

b!(s+ a′ − 1)[b]

This implies

(2.10)

Im(s) = A(r + s, b)
∑
g,h

(∫
H

f(z1)
(
1−m2z1Z

∗)−r−s−a′−b (1−m2z̄1Z̄
∗)−s+a′

× yk1+s−a′
1

dx1dy1

y2
(mX2)b)

)
|Zr+s+a′,s−a′,σb l(h)g × det(Y )s−a

′

The integral in (2.10) is exactly of the same type as in [2, (1.4),(1.5)]. Using the
same notation

µ(k, s) = (−1)
k
2 · 23−k−2s π

k + s− 1
as in [2] we get by the same reasoning as there

(2.11)

Im(s) = A(r + s, b) · µ(r + a+ b, s− a′) ·m−r−2s×∑
g

(
fρ |r+b+a Γ0(N)

(
0 −m−1

m 0

)
Γ0(N)

)
(g < Z >∗)

×
(
σb ⊗ detk+a (j(g, Z))

)−1

Xb
2

(
det Im(g<Z>)
Im(g<Z>∗)

)s−a′
with j(

(
a b
c d

)
, z) = cz + d. This is (essentially) a vector-valued Klingen-type

Eisenstein series attached to the modular form

fρ |k1 Γ0(N)
(

0 −m−1

m 0

)
Γ0(N)

where
fρ(z) = f(−z̄).
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¿From now on we assume that f is a normalized newform (eigenform) of level
Nf | N ; we write N = Nf ·Nf whenever it is convenient. The Fourier coefficients
of f are then totally real and we have an Euler product expansion of type

(2.12)
∑

af (n)n−s =

∏
p|Nf

1
(1− af (p)p−s

 ·
∏
p6|Nf

1
(1− αpp−s)(1− α′pp−s)


Moreover for any prime q dividing Nf we have

af (q)2 = qk1−2

and
f |k1V

N
q = f |k1V

Nf
q = −af (q)q1− k1

2 f

where VN
q denotes the “Atkin-Lehner-involution” given by

VN
q =

(
x y
N q

)
with xq −Ny = q and q|x (for details we refer to [18]).

Actually we have to work not with the newform f itself, but with f |k1

(
Df 0
0 1

)
where Df is a fixed divisor of Nf

To simplify (2.11) further (for f |k1

(
Df 0
0 1

)
), we have to study

(2.13) ∑
m≡0(N)

f |k1

(
Df 0
0 1

)
|k1 Γ0(N)

(
0 −m−1

m 0

)
Γ0(N) ·m−s

= N−s
∞∑

m′=1

f |k1

(
Df 0
0 1

)
|k1 Γ0(N)

(
1 0
0 m′

2
N

)
Γ0(N) |k1

(
0 −1
N 0

)
·m′−s

Now we are essentially in a “local” situation, because we may decompose the “Fricke
involution” into Atkin-Lehner involutions:(

0 −1
N 0

)
= γ ◦

∏
q|N

VN
q

with γ ∈ Γ0(N).

We use the following formal identities:
(2.14)
p - N :
∞∑
l=0

f | Γ0(N)
(

1 0
0 p2l

)
Γ0(N)X l =

(1−X)(1− p2X2)
(1− pX)(1− α2

pp
−k1+2X)(1− α′p2p−k1+2X)

Proof: Standard

(2.15) p|Nf :
∞∑
l=0

f | Γ0(N)
(

1 0
0 p2l+1

)
Γ0(N)◦VN

p ·X l = p1− k2 · af (p)
1−X

·f |k1V
Nf
p =

−1
1−X

f

Proof: Standard, using af (pn) = af (p)n and af (p2) = pk1−2
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(2.16) p|Nf :
∞∑
l=0

f | Γ0(N)
(

1 0
0 p2l+1

)
Γ0(N) ◦VN

p ×X l =

= p1− k1
2 ·

(f |U(p)− p k2 · f |k1

(
p 0
0 1

)
·X)

(1− α2
pp
−k1+2X)(1− α′p2p−k1+2X)

|k1V
N
q

Proof: Standard.
Using

f |T (p) = f |U(p) + p
k1
2 −1 · f |k1

(
p 0
0 1

)
and

f |k1

(
p 0
0 1

)
|k1V

N
q = f

we get for (2.16)

(2.17)
p1− k1

2 af (p)|k1

(
p 0
0 1

)
− (1 + pX)f

(1− α2
pp
−k1+2X)(1− α′p2p−k1+2X)

In quite the same way we get (still for the case p|Nf ):

∞∑
l=0

f |k1

(
p 0
0 1

)
| Γ0(N)

(
1 0
0 p2l+1

)
Γ0(N)|k1V

N
p ·X l =

p(1 + pX) · f − af (p)p−
k1
2 +2X · f |k1

(
p 0
0 1

)
(1− α2

pp
−k1+2X)(1− α′p2p−k1+2X)

|k1V
N
p =

p(1 + pX)f |k1

(
p 0
0 1

)
− af (p)p2− k1

2 f ·X

(1− α2
pp
−k1+2X)(1− α′p2p−k1+2X)

The usual procedure ( X 7−→ p−s )yields for (2.13)
(2.19)∑
m≡0(N)

f |k1

(
Df 0
0 1

)
|k1 Γ0(N)

(
0 −m−1

m 0

)
Γ0(N) ◦

(
0 −1
N 0

)
·m−s

= N−s
∏
p-N

(1− p−s)(1− p2−2s)
1− p−s+1

∏
p-Nf

1
(1− α2

pp
−s−k1+2)(1− α2

pp
−s−k1+2)

∏
p|Nf

−1
(1− p−k−s)

× f̃s

with

(2.20) f̃s =
∑
d|Nf

α(d,D, s)f |k1

(
d 0
0 1

)
where

(2.21) α(d,D, s) =
∏
p|Nf

α(dp, Dp, s)
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is a multiplicative function given by (2.14)-(2.18). Here we denote by tp the p-
part of a positive rational number t. In the sequel we write αp(d,D, s) instead of
α(dp, Dp, s).

2.2 Second Unfolding

To continue the computation of the integral (2.1) we first need to find a good
parametrization of C2,1(N)\Γ2

0(N); we shall follow [22] (with the modifications
necessary for level N > 1). We first remark that two elements of Sp2(Z) are
equivalent modulo C2,1(Z) iff their last rows are equal up to sign (the same is true
for Γ0(N) and C2,1(N)).

For C2,1(Z)\Sp2(Z) the parametrization given in [22] is as follows:

(2.22) {ι1,1(12, h) | h ∈ Sl2(Z)∞\Sl2(Z)}

(2.23)
{
d(J)ι1,1(h,12) | h ∈ Sl2(Z)+

∞\Sl2(Z)
}

(2.24) ⋃
u, v ∈ N

u, v coprime

{
d(M) ◦ ι1,1(h, h′) | h ∈ Sl2(Z)∞\Sl2(Z), h′ ∈ Sl2(Z)+

∞\Sl2(Z)
}

where

d :

 Gl2(R) −→ Sp2(R)

A 7−→
(

(At)−1 0
0 A

)
J =

(
0 −1
1 0

)
and M is an element of Sl2(Z) with M =

(
∗ ∗
u v

)
. Among

(2.22), (2.23),(2.24) precisely the following elements have their last row congruent
to (0, 0, ∗, ∗) modulo N:

(2.22′) {ι1,1(12, h) | h ∈ Γ∞\Γ0(N)}

(2.23′)
{
d(J)ι1,1(h,12) | h ∈ Γ+

∞\Γ0(N)
}

(2.24′)

d(M) ◦ ι1,1(h, h′) |

h ∈ Sl2(Z)∞\Sl2(Z), h′ ∈ Sl2(Z)+
∞\Sl2(Z)

M =
(
∗ ∗
u v

)
∈ Sl2(Z)+

∞\Sl2(Z)

u, v ∈ N, uc ≡ 0(N), vc′ ≡ 0(N)


Here c (and c′) denote the lower left entry of h (and h′).

At this point we should emphasize that (2.22’)-(2.24’) do not give representatives
of C2,1(N)\Γ2

0(N), since these elements are in general not in Γ2
0(N), but they are

equivalent modulo C2,1(Z) to such representatives (by using a suitable transforma-
tion we shall finally transport them into Γ2

0(N)).

To describe (2.24’) more appropriately we fix two decompositions

N = N1 ·N2 and N = N ′1 ·N ′2
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and consider for the moment only those h =
(
∗ ∗
c d

)
and h′ =

(
∗ ∗
c′ d′

)
with

gcd(c,N) = N1 and gcd(c′, N) = N ′1. Then the data

u, v,

(
∗ ∗
c d

)
,

(
∗ ∗
c′ d′

)
describe an element of (2.24’) iff N2|u and N ′2|v. These data exist only if N |N1 ·N ′1,
because we require u, v to be coprime. It is a standard procedure to translate
these considerations into more group theoretic terms: We denote by τN1 = τNN1

an

element of Sl2(Z) with τN1 =
(

α β
N1 N2

)
and N2|α. This implies in particular

that (τN1)2 ∈ Γo(N).
Then (2.24’) can also be described by

(2.24′′)
⋃

N1N2 = N
N ′1N

′
2 = N

N |N1N
′
1

d(M)ι1,1(h, h′)
∣∣
h ∈

(
τN1Γ0(N)τ−1

N1

)
∞ \τN1Γ0(N)

h′ ∈
(
τN ′1Γ0(N)τ−1

N ′1

)+

∞
\τN ′1Γ0(N)

u, v positive, coprime , N2|u,N ′2|v



By a routine matrix calculation, we see that (with h, h′,M,N1, N
′
1 as in (2.24”))

(2.24′′′) ι1,1(τ(N1,N ‘1),12) ◦ d(M) ◦ ι1,1(h, h′)

is indeed in Γ2
0(N), if we require (as we are allowed to do !) that M is of type

M =
(
r s
u v

)
with v|r.

Now we denote by Im,ν1,ν2(z2, z3, s) the Xν2
2 Xν3

3 −component of the C[X2, X3]b-
valued function Im(s), restricted to (z2, z3) ∈ H×H ↪→ H2. With f, φ, ψ as before
(f now again an arbitrary element in [Γ0(N), k1]0) we consider the double integral

(2.25)
∫ ∫

(Γ0(N)\H)2

φ(z2)ψ(z3)Kν2,ν3
f (z2, z3, s)yk2

2 yk3
3

dx2dy2

y2
2

dx3dy3

y2
3

where

Kf (Z, s) =∑
g∈C2,1(N)\Γ2

0(N)

f(g < Z >∗)
(
σb ⊗ detk+a(j(g, Z))

)−1

Xb
2 ·
(

det=(g < Z >)
=(g < Z >∗)

)s
is the same Klingen-type Eisenstein series as in (2.11), but with the Hecke operator
removed; again Kν2,ν3

f denotes theXν2
2 Xν3

3 -component of Kf , restricted to H×H.
We split Kν2,ν3

f into three parts according to the three types (2.22),(2.23),(2.24) of
left cosets:

(2.26) Kν2,ν3
f =

3∑
i=1

Kν2,ν3
f,i
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It is again easy to see that Kν2,ν3
f,1 and Kν2,ν3

f,2 do not contribute to the integral (2.25).
Using (2.24”) we further split Kν2,ν3

f,3 as

(2.27) Kν2,ν3
f,3 =

∑
N1,N ′1

Kν2,ν3
f,N1,N ′1

We can express Kν2,ν3
f,N1,N ′1

more explicitly as follows

(2.28) Kν2,ν3
f,N1,N ′1

=
(
b

ν2

) ∑
h,h′,u,v

f |k1 τ(N1,N ′1)(v2h(< z2 >) + u2h′(< z3 >))vν2uν3

× j(h, z2)−k−a−ν2j(h′, z3)−k−a−ν3

(
=(h < z2 >) · =(h′ < z3 >)

v2 · =(h < z2 >) + u2 · =(h′ < z3 >)

)s
where the summation over h, h′, u, v is given by (2.24”) with N1 and N ′1 fixed.

It is well known how to unfold integrals like

(2.29) I(f, φ, ψ,N1, N
′
1, s) :=∫ ∫

(Γ0(N)\H)2

φ(z2)ψ(z3)Kν2,ν3
f,N1,N ′1

(z2, z3, s)yk2
2 yk3

3

dx2dy2

y2
2

dx3dy3

y2
3

by applying τ−1
N1

and τ−1
N ′1

: The result is

(2.30) I(f, φ, ψ,N1, N
′
1, s) =

2
(
b

ν2

) ∫
(
τN1Γ0(N)τ−1

N1

)
∞
\Γ0(N)

∫
(
τN′1

Γ0(N)τ−1
N′1

)
∞
\Γ0(N)

(
φ |k2 τ

−1
N1

)
(z2) ·

(
ψ |k3 τ

−1
N ′1

)
(z3)

×
∑
u,v

f |k1 τ(N1,N ′1)(v2z2 + u2z3)vν2uν3

(
y2y3

v2y2 + u2y3

)s
yk2

2 yk3
3

dx2dy2

y2
2

dx3dy3

y2
3

We do not want to work with Fourier expansions at several cusps, therefore we
assume from now on that f , φ, ψ are normalized newforms (eigenforms of all Hecke
operators) of levels Nf , Nφ and Nψ (all dividing N).
We decompose N1 and N2 as

(2.31) N1 = N1,f ·Nf
1 , N2 = N2,f ·Nf

2

(and the same for N ′1, N ′2 and also for φ and ψ)

We mention here the following facts, which we shall use in the sequel:

•
R|N =⇒ τNN1

= γ ◦ τR(R,N1) with γ ∈ Γ0(R)

• For any divisor d of Nf we have(
d 0
0 1

)
◦ τNN1

= γ ◦
(
d 0
0 1

)
◦ τdNf(dNf ,N1) = γ ◦ τNfN1,f

◦

(
(d,Nf

1 ) 0
0 d

(d,Nf1 )

)
with γ ∈ Γ0(Nf )
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•

τNN1
= γ ◦

∏
q|N2

VN
q

 ◦ ( 1
N2

0
0 1

)
with γ ∈ Γ0(N) and (using the same notation as in [18]

VN
q =

(
x y
N q

)
with xq −Ny = q and q|x.
• For any newform g of level N and weight k we have (see [18, Theorem 3])

g |k VN
q = −ag(q)q1− k2 · g

At this point we introduce - as we already did for Nf in the previous subsection-
divisors Dφ and Dψ of Nφ and Nψ; as usual we further factorize them (for given
N1 and N ′1) as Dφ = Dφ

1 ·D
φ
2 and Dψ = D′1

ψ ·D′ψ2 .
Using these facts we get the following Fourier expansions
(2.32)(
φ|k2

(
Dφ 0
0 1

)
|k2τ

−1
N1

)
(z2) = φ|k2

(
Dφ 0
0 1

)
|k2τN1(z2)

= φ|k2τ
Nφ
N1,φ

|k2

(
Dφ

1 0
0 Dφ

2

)
(z2)

= φ|k2

( ∏
q|N2,φ

VNφ
q

)
|k2

(
Dφ1
N2,φ

0
0 Dφ

2

)
(z2)

=

( ∏
q|N2,φ

−a(q)q−
k2
2 +1

)
·N−

k2
2

2,φ Dφ
1

k
2Dφ

2

−k
2 · φ( Dφ1

Dφ2N2,φ
· z2)

= Dφ
1

k2
2 Dφ

2

− k2
2

( ∏
q|N2,φ

−aφ(q)q−k2+1

)∑
aφ(n′)e

2πi
D
φ
1

D
φ
2N2,φ

·n′z2

(2.33)(
ψ|k3

(
Dψ 0
0 1

)
|k3τ

−1
N ′1

)
(z3) = D′1

ψ
k3
2
D′2

ψ−
k3
2

 ∏
q|N ′2,ψ

−aψ(q)q−k3+1

∑ aψ(n′′)e
2πi

D′1
ψ

D′2
ψN′2,ψ

n′′z3

and for a divisor d of Nf :
(2.34)

f |k1

(
d 0
0 1

)
◦ τN(N1,N ′1)(z) = f |k1τ

Nf
(N1,N ′1)f

◦
(

(d, (N1, N
′
1)f ) 0

0 d
(d,(N1,N ′1)f )

)
= f |k1τ

Nf
(N1,f ,N ′1,f ) ◦

(
(d,Nf

1 , N
′
1
f ) 0

0 d

(d,Nf1 ,N
′
1
f )

)
= d−

k1
2 · (d,Nf

1 , N
′
1
f )k1

∏
q|lcm(N2,f ,N ′2,f )

(
−af (q)q−k1+1

)∑
af (n)e2πiB·nz

We use here the simple fact that Nf

(N1,f ,N ′1,f ) = lcm(N2,f , N
′
2,f ) and

(2.35) B :=
1

lcm(N2,f , N ′2,f )
· (d,Nf

1 , N
′
1
f )

2

d
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Now we are ready to plug these Fourier expansions into the expression (2.30) for

I(f |k1

(
d 0
0 1

)
, φ|k2

(
Dφ 0
0 1

)
, ψ|k3

(
Dψ 0
0 1

)
, N1, N

′
1, s)

By integration over x2 mod N2 and x3 mod N ′2 we see that only those terms af (n)aφ(n′)aψ(n′′)
give non-zero contributions, for which

(2.36) Bnv2 =
n′

N2,φ
· D

φ
1

Dφ
2

and

(2.37) Bnu2 =
n′′

N ′2,ψ
· D
′ψ
1

D′ψ2

Using

(2.38)

∞∫
0

∞∫
0

e−4πBnv2y2−4πBnu2y3

(
y2y3

v2y2 + u2y3

)s
yk2−2

2 yk3−2
3 dy2dy3

=
Γ(s+ k2 + k3 − 2)Γ(s+ k2 − 1)Γ(s+ k3 − 1)

Γ(2s+ k2 + k3 − 2)
·(4πBn)−s−k2−k3+2·v−2s−2k2+2·u−2s−2k3+2

we obtain
(2.39)

I(f |k1

(
d 0
0 1

)
, φ|k2

(
Dφ 0
0 1

)
, ψ|k3

(
Dψ 0
0 1

)
, N1, N

′
1, s) =

2
(
b
ν2

)
· I∞(s)N2N

′
2B
−s−k2−k3+2 ·Dφ

1

k2
2 Dφ

2

− k2
2 D′1

ψ
k3
2
D′2

ψ−
k3
2 · d−

k1
2 · (d,Nf

1 , N
′
1
f )k1∏

q|lcm(N2,f ,N ′2,f )

(−af (q)q−k1+1)
∏

q|N2,φ

(−aφ(q)q−k2+1)
∏

q|N ′2,ψ
(−aψ(q)q−k3+1)·

·
∑
u,v,n

af (n)aφ(nv2BN2,φ · D
φ
2

Dφ1
)aψ(nu2BN ′2,ψ ·

D′ψ2
D′ψ1

)v−2s−2k2+2+ν2u−2s−2k3+2+ν3n−s−k2−k3+2

with

(2.40) I∞(s) = (4π)−s−k2−k3+2 · Γ(s+ k2 + k3 − 2)Γ(s+ k2 − 1)Γ(s+ k3 − 1)
Γ(2s+ k2 + k3 − 2)

To finish this section, we collect all the information obtained so far; we must take
care of the fact that we worked in section (2.2) with the Eisenstein series Kf (Z, s)
rather than with Kf (Z, s− a′) as is required by (2.11). The value of the threefold
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integral A as defined by (2.1) is
(2.41)

A(f |k1

(
Df 0
0 1

)
, φ|k2

(
Dφ 0
0 1

)
, ψ|k3

(
Dψ 0
0 1

)
, s) =

2
(
b
ν2

)
·A(r + s, b) · µ(r + a+ b, s− a′) · I∞(s− a′) ·N−2s−r(∏

p-N

(1−p−2s−r)(1−p2−4s−2r)
1−p−2s−r+1

)( ∏
p-Nf

1
(1−α2

pp
−2s−r−k1+2)(1−α′p2p−2s−r−k1+2)

)( ∏
p|Nf

−1
1−p−2s−r

)
·

∑
d|Nf

α(d,Df , 2s− r) · d
−k1

2 · (d,Nf
1 , N

′f
1 )
k1

(Dφ
1 )

k2
2 · (Dφ

2 )
− k2

2 · (D′1
ψ)

k3
2 · (D′2

ψ)
− k3

2

∑
N1N2=N,N ′1N

′
2=N,N |N1N ′1

N2 ·N ′2 ·B−s+a
′−k2−k3+2 ∏

p|lcm(N2,f ,N ′2,f )

(−af (p)p−k1+1)

( ∏
p|N2,φ

(−aφ(p)p−k2+1)

)( ∏
p|N ′2,ψ

(−aψ(p)p−k3+1)

)
∑
n,u,v

af (n)aφ(nv2BN2,φ · D
φ
2

Dφ1
)aψ(nu2BN ′2,ψ ·

D′ψ2
D′ψ1

)u−2s+a−2k3+2+ν3v−2s+a−2k2+2+ν2n−s+a
′−k2−k3+2

We remind the reader that the summation over u and v is subject to the condition
N2|u and N ′2|v.

3. The Euler factors

Using the multiplicativity properties of the Fourier coefficients of f , φ, ψ and that
the conditions of summation are of multiplicative type we may now write (2.41) as

(3.1) 2
(
b

ν2

)
·A(r + s, b) · µ(r + a+ b, s− a′) · I∞(s− a′) ·N−2s−r ×

∏
p

Tp(s)

To save notation we write

(3.2) Tp = T 0
p · T 1

p

where T 1
p denotes the last four lines of (2.41). In all cases to be considered, the

pair [(N1)p, N
′
1p] can take the values [p, p], [p, 1] and [1, p]; therefore we split T 1

p as

(3.3) T 1
p = Cpp + Cp1 + C1p

If dp can take both values 1 and p, we further decompose C∗∗ as

(3.4) C∗∗ = C1
∗∗ + Cp∗∗

according to the cases dp = 1 and dp = p.

Part I: Df
p = Dφ

p = Dψ
p = 1

IA : The case p|Nf , p|Nφ, p|Nψ
(This is the case also considered by Gross/Kudla[11])

The conditions imply dp = Nf
p = Nφ

p = Nψ
p = 1, αp(d,Df , s) = 1 and

Bp =
{

1 for the case [p, p]
1
p otherwise
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(3.5)

Cpp(s) =

( ∞∑
l=0

∞∑
t=0

af (pl)aφ(pl+2t)aψ(pl)
(
pl)
)−s+a′−k2−k3+2 (

pt)
)−2s+a−2k2+2+ν2 +

+
∞∑
l=0

∞∑
t=1

af (pl)aφ(pl)aψ(pl+2t)
(
pl)
)−s+a′−k2−k3+2 (

pt)
)−2s+a−2k3+2+ν3

)
This equals (we use the fact that aφ(p2) and aψ(p2) are powers of p)

1
1− af (p)aφ(p)aψ(p)p−s+a′−k2−k3+2

·
{

1
1− aφ(p2)p−2s+a−2k2+2+ν2

+
aψ(p2)p−2s+a−2k3+2+ν3

1− aψ(p)p−2s+a−k3+2+ν3

}
=

1
1− af (p)aφ(p)aψ(p)p−s+a′−k2−k3+2

·
{

1
p−2s+a−k2+ν2

+
p−2s+a−k3+ν3

1− p−2s+a−k3+ν3

}
=

1
1− af (p)aφ(p)aψ(p)p−s−3a′−2r−b+2

· 1 + p−2s−r

1− p−2s−r

(3.6) C1,p = p · ps−a
′+k2+k3−2 · (−af (p)p−k1+1) · (−aφp−k2+1)×

×
∞∑
l=0

∞∑
t=1

af (pl)aφ(pl · 1
p
· p)aψ(pl+2t · 1

p
)
(
pt
)−2s+a−2k3+2+ν3 ·

(
pl
)−s+a′−k2−k3+2

=
1

1− af (p)aφ(p)aψ(p)p−s+a′−k2−k3+2
· af (p)aφ(p)aψ(p)p3−s−3a′−b−2r

1− aψ(p2)p−2s+a−2k3+2+ν3

=
1

1− af (p)aφ(p)aψ(p)p−s−3a′−2r−b+2
· af (p)aφ(p)aψ(p)p3−s−3a′−b−2r

1− p−2s−r

Quite the same computation shows that

(3.7) Cp,1 = C1,p

Hence

(3.8)

T 1
p =

1
1− af (p)aφ(p)aψ(p)p−s−3a′−2r−b+2

·1 + 2af (p)aφ(p)aψ(p)p−s−3a′−b−2r+3 + p−2s−r

1− p−2s−r

Now we write the numerator as

(3.9)

1 + 2af (p)aφ(p)aψ(p)p−s−3a′−b−2r+3 + p−2s−r =
(

1 + af (p)aφ(p)aψ(p)p−s+3−3a′−b−2r
)2

=
(1− p−2s−r)2

(1− af (p)aφ(p)aψ(p)p−s+3−3a′−b−2r)2

Therefore we obtain

(3.10)

Tp(s) =
−1

1− af (p)aφ(p)aψ(p)p−s−3a′−2r−b+2
· 1
(1− af (p)aφ(p)aψ(p)p−s+3−3a′−b−2r)2
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IB :The case p|Nf , p|Nφ, p|Nψ These conditions imply

(Nf )p = Nφ
p = Nψ

p = Dφ
p = Dψ

p = 1 and dp ∈ {1, p}

αp(d,Df , s) =
{ −(1 + p1−s) if dp = 1
p1− k1

2 · af (p) if dp = p

and

Bp =
{
p if dp = (N1)p = N ′1p = p
1
dp

otherwise

What we get is this:

(3.11)

C1
pp(s) =

−(1 + p1−2s−r)(1 + p−2s−r)
(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− p−2s−r)

(similar calculation as in (3.5)

(3.12)
C1

1p(s) = −(1 + p1−2s−r) · p · (−aφ(p)p−k2+1)×
∞∑
l=0

∞∑
t=1

af (pl)aφ(pl · p)aψ(pl+2t)(pt)−2s+a−2k3+2+ν3 · (pl)−s+a′−k2−k3+2

=
(1 + p1−2s−r) · p−2s−r

(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− p−2s−r)

(3.13) C1
p1 = C1

1p

(3.14)
Cppp(s) = p1− k1

2 af (p)p−
k1
2 pk1p−s+a

′−k2−k3+2×{∞∑
l=0

∞∑
t=0

af (pl)aφ(pl+2tp)aψ(plp)(pt)−2s+a−2k2+2+ν2(pl)−s+a
′−k2−k3+2+

∞∑
l=0

∞∑
t=1

af (pl)aφ(plp)aψ(pl+2tp)(pt)−2s+a−2k3+2+ν3(pl)−s+a
′−k2−k3+2

}
=

af (p)aφ(p)aψ(p)p−s−3a′−2r−b+3(1 + p−2s−r)
(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− α′paφ(p)aψ(p)p−s−3a′−2r−b+2)(1− p−2s−r)

(3.15)
Cp1,p = p1− k1

2 af (p)p−
k1
2 · p · ps−a′+k1+k2−2(−aφ(p)p−k2+1)×

∞∑
l=0

∞∑
t=1

af (pl)aφ(pl 1
p · p)aψ(pl+2t 1

p )(pt)−2s+a−k3+2+ν3(pl)−s+a
′−k2−k3+2

=
−af (p)aφ(p)aψ(p)p−s−2r−3a′−b+3

(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− α′paφ(p)aψ(p)p−s−3a′−2r−b+2)(1− p−2s−r)

(3.16) Cpp1 = Cp1p

All the C∗∗∗ have the same denominator, the numerator of
∑
C∗∗∗ being equal to

1− p−2s−r + p1−2s−r − afaφaψ
{
p−3s−3r−a−b+3 − p−s−a−2r−b+3

}
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This can be factorized as

−(1− p−2s−r)(1 +αpaφ(p)aψ(p)p−s−2r−3a′−b+3)(1 +α′paφ(p)aψ(p)p−s−2r−3a′−b+3)

Now we also write the denominator of T 0
p as product of linear factors in p−s using

(1− α2
pp
−k1+2−2s−r) = (1− αpaφaψp−s−3a′−b−2r+3)(1 + αpaφaψp

−s−3a′−b−2r+3)

(and the same with α′p instead of αp); therefore we get some cancellations and
arrive at

Tp =
−1

(1− αpaφ(p)aψ(p)p−s−3a′−b−2r+2)(1− α′paφ(p)aψ(p)p−s−3a′−b−2r+2)

× 1
(1− αpaφ(p)aψ(p)p−s−3a′−b−2r+3)(1− α′paφ(p)aψ(p)p−s−3a′−b−2r+3)

(3.17)

IC The case p|Nf , p|Nφ, p|Nψ

We have

(B)p =
{

1 if N1 = N ′1 = p
1
p otherwise

and we get
(3.18)
C1p = p · ps−a′+k2+k3−2 · (−af (p)p−k1+1)×

∞∑
l=1

∞∑
t=1

af (pl)aφ(pl 1
p )aψ(pl+2t 1

p )(pt)−2s+a−2k3+2+ν3(pl)−s+a
′−k2−k3+2

= −
∞∑
l′=0

∞∑
t=1

af (pl
′
)aφ(pl

′
)aψ(pl

′+2t)(pt)−2s+a−2k3+2+ν3(pl
′
)
−s+a′−k2−k3+2

(3.19)

Cp1 = −
∞∑
l=0

∞∑
t=1

af (pl)aφ(pl+2t)aψ(pl)(pt)−2s+a−2k2+2+ν2(pl)
−s+a′−k2−k3+2

(3.20)

Cpp(s) =

( ∞∑
l=0

∞∑
t=0

af (pl)aφ(pl+2t)aψ(pl)
(
pl)
)−s+a′−k2−k3+2 (

pt)
)−2s+a−2k2+2+ν2 +

+
∞∑
l=0

∞∑
t=1

af (pl)aφ(pl)aψ(pl+2t)
(
pl)
)−s+a′−k2−k3+2 (

pt)
)−2s+a−2k3+2+ν3

)
Summing up the C∗∗ we see that the summands in (3.20) with t 6= 0 cancel against
(3.18) and (3.19) and we get

Tp(s) = −(1− p−2s−r)−1
∞∑
l=0

af (pl)aφ(pl)aψ(pl)(pl)
−s−3a′−b−2r+2

=
−1

(1− af (p)βpγpp−s−3a′−b−2r+2)(1− af (p)βpγ′pp−s−3a′−b−2r+2)
×(3.21)

× 1
(1− af (p)β′pγpp−s−3a′−b−2r+2)(1− af (p)β′pγ′pp−s−3a′−b−2r+2)
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I D: The case p - N

This case (which is in some sense the most difficult one) was previously considered
in [9] for the case of equal weights. It was already noticed in [21] and [22] that the
result from [9] carries over to the case of arbitrary weights. We just state the result
here:

(3.22) Tp = (1− p−2s−r)(1− p2−4s−2r)Lp(f ⊗ φ⊗ ψ, s+ 3a′ + 2r + b− 2)

Part II: Df
p = Nf

p , Dφ
p = Nφ

p , Dψ
p = Nψ

p

Only the cases B and C are to be investigated, the case B being the most compli-
cated:

II B : The case p|Nf , p|Nφ, p|Nψ
These conditions imply

αp(d,Df , s) =
{
−af (p)p2− k1

2 −s if dp = 1
p(1 + p1−s) if dp = p

Bp =
{
p if dp = (N1)p = (N ′1)p = p
1
d otherwise

(3.23)
C1
pp = αp(1, Df , 2s+ r)×{∞∑

l=0

∞∑
t=0

af (pl)aφ(pl+2t)aψ(pl)(pt)−2s+a−2k2+2+ν2(pl)−s+a
′−k2−k3+2 +

∞∑
l=0

∞∑
t=1

af (pl)aφ(pl)aψ(pl+2t)(pt)−2s+a−2k3+2+ν3(pl)−s+a
′−k2−k3+2 }

=
αp(1, Df , s)(1 + p−2s−r)

(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− α′paφ(p)aψ(p)p−s−3a′−2r−b+2)(1− p−2s−r)

(computation similar to (3.5))

(3.24)
C1

1p = αp(1, Df , s) · p · (−aφ(p)p−k2+1)×
∞∑
l=0

∞∑
t=1

af (pl)aφ(plp)aψ(pl+2t)(pt)−2s+a−2k3+2+ν3(pl)−s+a
′−k2−k3+2

=
−p−2s−rαp(1, Df , 2s+ r)

(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− α′paφ(p)aψ(p)p−s−3a′−2r−b+2)(1− p−2s−r)

(3.25) C1
p,1 = C1

1,p

and

(3.26)∑
C1
∗∗ =

−af (p)p2− k1
2 −s

(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− α′paφ(p)aψ(p)p−s−3a′−2r−b+2)



22 S. BÖCHERER AND R. SCHULZE-PILLOT

(3.27)
Cppp(s) = αp(p,Df , s+ 2r) · p−

k1
2 pk1p−s+a

′−k2−k3+2×
∞∑
l=0

∞∑
t=0

af (pl)aφ(pl+2tp)aψ(plp)(pt)−2s+a−2k2+2+ν2(pl)−s+a
′−k2−k3+2+

∞∑
l=0

∞∑
t=1

af (pl)aφ(plp)aψ(pl+2tp)(pt)−2s+a−2k3+2+ν3(pl)−s+a
′−k2−k3+2

=
αp(p,Df , 2s+ r)aφ(p)aψ(p)p

k1
2 −s−3a′−2r−b+2(1 + p−2s−r)

(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− p−2s−r)

(similar computation as in (3.5))

(3.28)
Cp1p(s) = αp(p,Df , 2s+ r) · p−

k1
2 · p · ps−a′+k2+k3−2(−aφp−k2+1)×

∞∑
l=0

∞∑
t=1

af (pl)aφ(pl 1
pp)a− ψ(pl+2t 1

p )(pt)−2s+a−2k3+2+ν3(pl)−s+a
′−k2−k3+2

=
−αp(p,Df , 2s+ r)aφ(p)aψ(p)p−

k1
2 −s−a

′−r+2

(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− α′paφ(p)aψ(p)p−s−3a′−2r−b+2)(1− p−2s−r)

(3.29) Cpp1 = Cp1p

and hence

(3.30)∑
Cp∗∗ =

−aφaψ(1 + p1−2s−r)p−
k1
2 −s−a

′−r+3

(1− αpaφ(p)aψ(p)p−s−3a′−2r−b+2)(1− α′paφ(p)aψ(p)p−s−3a′−2r−b+2)

The numerator of
∑
C∗∗∗ is equal to

(3.31) − 1
aφaψ

p−
k1
2 +r+3a′+b−1−s(1 + af (p)aφ(p)aψp−s−2r+3−b−3a′ + p1−2s−r)

We can therefore apply the same kind of trick as in case I B; denoting by εp(φ) the
eigenvalue of the Atkin-Lehner-involution V Np acting on φ (and similarly for ψ) we
end up with

Tp(s) =
−εp(φ)εp(ψ)p1− r2−s

(1− αpaφ(p)aψ(p)p−s−3a′−b−2r+2)(1− α′paφ(p)aψ(p)p−s−3a′−b−2r+2)

× 1
(1− αpaφ(p)aψ(p)p−s−3a′−b−2r+3)(1− α′paφ(p)aψ(p)p−s−3a′−b−2r+3)

(3.32)

II C: The case p|Nf , p|Nφ, p|Nψ
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(3.33)
Cpp(s) = p

k2
2 · p

k3
2 ×{∞∑

l=1

∞∑
t=0

af (pl)aφ(pl+2t 1
p )aψ(pl 1

p )(pt)−2s+a−2k2+2+ν2(pl)−s+a
′−k2−k3+2+

+
∞∑
l=1

∞∑
t=1

af (pl)aφ(pl 1
p )aψ(pl+2t 1

p )(pt)−2s+a−2k3+2+ν3(pl)−s+a
′−k2−k3+2 }

= p−s+a
′+2− k2+k3

2 ×{∞∑
l=0

∞∑
t=0

af (pl+1)aφ(pl+2t)aψ(pl)(pt)−2s+a−2k2+2+ν2(pl)−s+a
′−k2−k3+2 +

∞∑
l=0

∞∑
t=1

af (pl+1)aφ(pl)aψ(pl+2t)(pt)−2s+a−2k3+2+ν3(pl)−s+a
′−k2−k3+2 }

(3.34)
C1p = p−

k2
2 +

k3
2 · p · ps−a′+k2+k3−2 · (−af (p)p−k1+1)×

∞∑
l=0

∞∑
t=1

af (pl)aφ(pl 1
pp)aψ(pl+2t 1

p
1
p )(pt)−2s+a−2k3+2+ν3(pl)−s+a

′−k2−k3+2

= −p−s+a′+2− k2+k3
2 ×

∞∑
l=0

∞∑
t=0

af (pl+1)aφ(pl)aψ(pl+2t)(pt)−2s+a−2k3+2+ν3(pl)−s+a
′−k2−k3+2

(3.35)
Cp1 = −p−s+a′+2− k2+k3

2 ×
∞∑
l=0

∞∑
t=0

af (pl+1)aφ(pl+2t)aψ(pl)(pt)−2s+a−2k2+2+ν3(pl)−s+a
′−k2−k2+2

Hence in the sum of the C∗∗ only the “t = 0-part” of Cp1 survives and we obtain

Tp =
−εp(f)p1−s− r2

(1− af (p)βpγpp−s−3a′−b−2r+2)(1− af (p)βpγ′pp−s−3a′−b−2r+2)
(3.36)

× 1
(1− af (p)β′pγpp−s−3a′−b−2r+2)(1− af (p)β′pγ′pp−s−3a′−b−2r+2)

Remark: Although our list of Euler factors is complete, the reader should be aware
of the fact that in our integral representation (2.1) we are free to interchange the
roles of φ and ψ (interchanging the roles of ν2 and ν3 at the same time), but f has
to be the cusp form of largest weight. Therefore e.g. in case IB, IIB we should
also consider the case where p does not divide the level of φ or ψ. It will be left to
the reader to show by similar computations as above that in those cases the Euler
factor will be the same (as should be more or less clear from an adelic point of
view).

4. The Functional equation

The factors Tp = Tp(s) computed in the previous section are for p - N and for
p | gcd(Nf , Nφ, Nψ) up to a shift in the argument and an elementary factor the
known Euler factors of the triple product L-function L(f, φ, ψ, s) associated to
f, φ, ψ. We define therefore now:
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Definition 4.1 The triple product L-function associated to f, φ, ψ is for s >
k1+k2+k3−1

2 defined as L(f, φ, ψ, s) =
∏
p Lp(f, φ, ψ, s) where the Euler factor Lp(f, φ, ψ, s)

is given by

Lp(f, φ, ψ, s+ 3a′ + 2r + b− 2) =

{
−Tp(s) if p | N
(1− p−2s−r)−1(1− p2−4s−2r)−1Tp(s) if p - N

(4.1)

With

L∞(f, φ, ψ, s) = ΓC(s)ΓC(s+ 1− k1)ΓC(s+ 1− k2)ΓC(s+ 1− k3)(4.2)

(where ΓC(s) = (2π)−sΓ(s) as usual) the completed triple product L-function is

Λ(f, φ, ψ, s) = L∞(f, φ, ψ, s)L(f, φ, ψ, s).

With these notations we consider now for r = 2 the integral A(f, φ, ψ, s) from
2.1 (with c2(s) as in (1.19), ζp(s) = (1 − p−s)−1 for finite primes p and ζ∞(s) =
π−s/2Γ(s/2)):

Theorem 4.2 Assume r = 2. Then one has

(4.3)
A(f, φ, ψ, s)

c2(s)

=
(
b

ν2

)
ib+k1N−2s−223−2b−a π2+3a′

(s+ 1)(2s+ 1)
L∞(f, φ, ψ, s+ k1+k2+k3

2 − 1)
ζ∞(4s+ 2)ζ∞(2s+ 2)

×
∏
p-N

Lp(s+ k1+k2+k3
2 − 1)

ζp(4s+ 2)ζp(2s+ 2)

∏
p|N

(−Lp(f, φ, ψ, s+
k1 + k2 + k3

2
− 1))

Proof. This follows from 2.41 and the results of Section 3.

Theorem 4.3 The function Λ(f, φ, ψ, s) has a meromorphic continuation to all of
C and satisfies the functional equation

(4.4)

Λ(f, φ, ψ, s) = −N−4(s− k1+k2+k3
2 +1)(gcd(Nf , Nφ, Nψ))−(s− k1+k2+k3

2 +1)(
∏
p|N

εp)

× Λ(k1 + k2 + k3 − 2− s)

where for p | N the number εp is defined as the product of the eigenvalues under the
p-Atkin-Lehner-involution wp of those forms among f, φ, ψ whose level is divisible
by p.
Proof. We put r = 2 since for this choice the functional equation of the Eisenstein
series is under s 7→ −s. It is then not difficult to read off the functional equation of
E from the calculations in [11]; actually things become somewhat simplified since
we need the functional equation only up to oldforms. We need the following Lemma:
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Lemma 4.4 The Eisenstein series E2,s satisfies the functional equation:

(4.5) (s+ 1)(2s+ 1)ζ∞(4s+ 2)ζ∞(2s+ 2)
∏
p-N

ζp(4s+ 2)ζp(2s+ 2)E2,s(Z)

= −N−9s(s− 1)(2s− 1)ζ∞(−4s+ 2)ζ∞(−2s+ 2)

×
∏
p-N

ζp(−4s+ 2)ζp(−2s+ 2)E2,−s|
(

03 −13

N13 03

)
(Z) + Ẽs

where Ẽs is a linear combination of Eisenstein series for groups Γ3
0(N ′) with N ′

strictly dividing N or conjugates of these by a matrix ( 03 −13
M13 03

) with M | (N/N ′)
Proof. Let Fr,s(Z) be the Eisenstein series of degree 3 defined in the same way as
Er,s in Section 2, but with the summation running over coprime symmetric pairs
(C,D) with gcd(detC,N) = 1; one has

Er,s|r
(

0 −1
N 0

)
= N−(3r/2)−3sFr,s(4.6)

The calculation of the local intertwining operators M(s) = Mp(s) in sections 5 and
6 of [11] gives (in the notations of that article) Mp(s)Φp(s) for p = ∞ or p - N
and allows for p | N to express Mp(s)Φ0

p(s) explicitly as a linear combination of
the sections Φ0

p(−s),Φ3
p(−s), (Φp)K(−s), (Φp)K′(−s). An elementary calculation

shows in this case that the coefficient at Φ0
p(−s) is zero and that the coefficient at

Φ3
p(−s) equals

p−6s−3 ζp(2s− 1)ζp(4s− 1)
ζp(−4s+ 2)ζp(−2s+ 2)

.

We let Z = X + iY and g = (g∞, 1, . . . ) ∈ Sp3(A) with g∞ = ( 13 X
03 13

)( Y
1/2 03

03 Y −1/2 ).
Then it is well known that with

Φ0 = Φ−2
∞ ×

∏
p|N

Φ0
p ×

∏
p-N

(Φp)K

and analogously defined Φ3 one has E2,s(Z̄) = (detY )−1E(g, s,Φ0) and F2,s(Z̄) =
(detY )−1E(g, s,Φ3) (see Proposition 7.5 of [11]), and analogous formulae are true
for all the global sections Φ for which the p-adic components Φp are one of the
Φ0
p,Φ

3
p, (Φp)K , (Φp)K′ . The assertion of the lemma follows upon using the dupli-

cation formula for the gamma-function for the contribution from the infinite place
and then applying the functional equation of the Riemann zeta function.

We can now finish the proof of Theorem 4.3. ¿From Theorem 4.2, Lemma 4.4 and
the fact that the integrand in A(f,φ,ψ,s)

c2(s) contains by 1.18 a differential operator
independent of s we see (using the results of Part II in Section 3) that

Λ(s+
k1 + k2 + k3

2
− 1) = −N−4s(gcd(Nf , Nφ, Nψ))−s(

∏
p|N

εp)Λ(−s+
k1 + k2 + k3

2
− 1)

(4.7)

where for p | N the number εp is defined as in the assertion of Theorem 4.3.
Putting s′ = s + k1+k2+k3

2 − 1 we obtain the desired functional equation under
s′ 7→ k1 + k2 + k3 − 2− s′.
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5.Computation of the central critical value

Following the strategy of [12] we now evaluate the integral (2.1) at the point s = 0
using a variant of Siegel’s theorem, i. e. , expressing the value at s = 0 of the
Eisenstein series G as a linear combination of theta series. The setting for this is
basically the same as in [2, 5, 4]. Let M1,M2,M3 be relatively prime square free
integers such that M1 has an odd number of prime divisors. By D = D(M1) we
denote the quaternion algebra over Q ramified at ∞ and the primes dividing M1

and by R = R(M1,M2) an Eichler order of level M = M1M2 in D, i. e. , the
completion Rp is a maximal order for p - M2 and conjugate to {

(
a b
c d

)
∈ M2(Zp) |

c ≡ 0 mod p} for p | M2, where we identify D ⊗Qp with M2(Qp) for p - M1. By
gen(M1,M2,M3) we denote the genus of Z-lattices with quadratic form (quadratic
lattices) of R(M1,M2) equipped with the norm form of the quaternion algebra
scaled by M3. The genus theta series of degree n of gen(M1,M2,M3) is then

Θgen,(n)
M1,M2,M3

(Z) =
∑

{K}∈gen(M1,M2,M3)

Θ(n)(K,Z)
|O(K)|

where the summation is over a set of representatives of the classes in gen(M1,M2,M3),
O(K) is the (finite) group of orthogonal units of the quadratic lattice K, Z is a
variable in the Siegel upper half space Hn and

Θ(n)(K,Z) =
∑

x=(x1,...,xn)∈Kn

exp(2πitr(q(x)Z))

with q(x) = ( 1
2 (M3tr(xix̄j)))i,j .

We consider a double coset decomposition

D×A =
h=h(M1,M2)⋃

i=1

D×QyiR
×
A

of the adelic multiplicative group of D with R×A = D×∞ ×
∏
p6=∞R×p and represen-

tatives yi with n(yi) = 1 and (yi)∞ = 1. Then the lattices Iij = yiRy
−1
j (with

the norm form scaled by M3) exhaust gen(M1,M2,M3) (with some classes possibly
occurring more than once) and it is easily seen that with Ri = Iii and ei = |R×i |
we have

h∑
i,j=1

Θ(n)(Iij , Z)
eiej

= 2ωΘgen,(n)
M1,M2,M3

(Z)(5.1)

where ω = ω(M1,M2) is the number of prime divisors of M1M2. With these
notations we have from [2] (Theorem 3.2 and Corollary 3.2) and [5], (p.229):

Lemma 5.1 The value at s = 0 of G2,s(Z) is∑
M1M2M3|N

αM1,M2,M3Θgen,(3)
M1,M2,M3

(Z)

with
αM1,M2,M3 = (−1)1+ω(M1,M2)(M1M2)−3M−6

3 8π4ζ(N)(2)−2.
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In order to compute the value at s = 0 of the differentiated Eisenstein series from
Section 2 we have to compute(

D∗(a,ν2,ν3)
2 Θ(3)(K,−)

)
(ι111(z1, z2, z3))(5.2)

for the individual theta series appearing in the sum in Lemma 5.1. We denote
by Uµ the space of homogenous harmonic polynomials of degree µ in 4 variables
and identify an element of Uµ with a polynomial on D∞ by evaluating it at the
component vector of an element of D∞ with respect to an orthonormal basis relative
to the quaternion norm on D. Similarly, for ν ∈ N let U

(0)
ν be the space of

homogeneous harmonic polynomials of degree ν on R3 and view P ∈ U
(0)
ν as a

polynomial on D
(0)
∞ = {x ∈ D∞|tr(x) = 0}. The representations τν of D×∞/R

×

of highest weight (ν) on U
(0)
ν given by (τν(y))(P )(x) = P (y−1xy) for ν ∈ N give

all the isomorphism classes of irreducible rational representations of D×∞/R
×. By

〈〈 , 〉〉(0)
ν we denote the invariant scalar product in the representation space U (0)

ν ,
by 〈〈 , 〉〉µ the invariant scalar product in the SO(D∞,norm) =: H+

R-space Uµ.
We notice that the invariant scalar products 〈〈, 〉〉µi on the Uµi can be normalized
in such a way that they take rational values on the subspaces of polynomials with
rational coefficients and that these subspaces generate the Uµi . Indeed, consider
the Gegenbauer polynomial C(µi)(x, x′) = obtained from

C
(µi)
1 (t) = 2µi

[
µi
2 ]∑
j=0

(−1)j
1

j!(µi − 2j)!
(µi − j)!

22j
tµi−2j

by

C̃(µi)(x1, x2) = 2µi (norm(x1)norm(x2))µi/2C(µi)
1 (

tr(x1x2)
2
√

norm(x1)norm(x2)
)

and normalize the scalar product on Uµi such that C(µi) is a reproducing kernel, i.
e.

〈〈C(µi)(x, x′), Q(x)〉〉µi = Q(x′)

for all Q ∈ Uµi . Then the C(µi)(·, x′) with rational x′ are rational, generate Uµi ,
and the reproducing property implies that they have rational scalar products whith
each other. The same argument applies to the U (0)

ν .
It is well known that the group of proper similitudes of the quadratic space (D,norm)
is isomorphic to (D× ×D×)/Z(D×) via

(x1, x2) 7→ σx1,x2 with σx1,x2(y) = x1yx
−1
2

and that under this isomorphism SO(D,norm) is the image of

{(x1, x2) ∈ D× ×D× | n(x1) = n(x2)}.

Moreover, the SO(D∞,norm) =: H+
R-space U (0)

ν ⊗ U (0)
ν is isomorphic to the H+

R-
space U2ν and the isomorphism can be normalized in such a way that it preserves
rationality and is compatible with the invariant scalar products on both spaces
(which are assumed to be normalized as above).
Denoting by S the Gram matrix of the quadratic lattice K we know from Section
1 that (5.2) is of the form∑

x=(x1,x2,x3)∈(Z4)3

P (S
1
2x1, S

1
2x2, S

1
2x3) exp(πi(S[x1]z1 + S[x2]z2 + S[x3]z3))
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where P ∈ ⊗3
i=1Uki−2 is a harmonic polynomial of degree µi = ki − 2 on R4

in each of the variables and is invariant under the (diagonal) action of HR =
O(D⊗R,norm). Moreover, P is independent of S and has rational coefficients (up
to a factor of i3a

′
π3a′+b). The HR-invariant trilinear form T on Uµ1 ⊗ Uµ2 ⊗ Uµ3

defined by taking the scalar product with the invariant polynomial (i3a
′
π3a′+b)−1P

( as remarked in Section 1 this is up to scalars the unique invariant trilinear form)
is hence rational (i. e. takes rational values on tensor products of polynomials with
rational coefficients).
If all the µi are even (as is the case in our situation) then the decomposition of
H+

R and of Uµ as U (0)
µ/2 ⊗ U

(0)
µ/2 from above gives furthermore that T factors as

T (0) ⊗ T (0), where the unique (up to scalars) D×∞-invariant trilinear form T (0) on
U

(0)
µ1/2
⊗ U (0)

µ2/2
⊗ U (0)

µ3/2
has the same rationality properties as T . Of course both T

and T0 are just the ordinary multiplication if all the µi are 0.
For any positive definite symmetric 4× 4-matrix S we define the Uµi-valued theta
series Θ̃(µi)

S by

Θ̃(µi)
S (z)(x′) =

∑
x∈Z4

C(µi)(S1/2x, S1/2x′) exp(πiS[x]z)(5.3)

We notice that if K is a quaternary quadratic lattice with Gram matrix S the
right hand side of 5.3 does not depend on the choice of basis of K with respect to
which the Gram matrix is computed (because of the invariance of C(µi) under the
(diagonal) action of the orthogonal group); we may therefore write it as Θ̃(µi)(K)
as well.
We denote by Θ̃(µi)

M1,M2,M3
the weighted average of the Θ̃(µi)

S over the Gram matrices
of representatives of the classes in the genus gen(M1,M2,M3) as above. We find

(D∗(a,ν2,ν3)
2 Θ(S,−))(ι111(z1, z2, z3)) = i3a

′
π3a′+bT (Θ̃(µ1)(S, z1)⊗ Θ̃(µ2)(S, z2)⊗ Θ̃(µ3)(S, z3))

(5.4)

(where T is as above). For the value at s = 0 of (2.1) we obtain therefore

(5.5) i3a
′
π3a′+b

∑
M1M2M3|N

αM1,M2,M3T (〈Θ̃(µ1)
M1,M2,M3

(z1), f(z1)〉 ⊗

⊗ 〈Θ̃(µ2)
M1,M2,M3

(z2), φ(z2)〉 ⊗ 〈Θ̃(µ3)
M1,M2,M3

(z3), ψ(z3)〉)

where by 〈, 〉 we denote the Petersson product.
In order to evaluate this expression further we use Eichler’s correspondence. We
fix M1,M2 and an Eichler order R(M1,M2) ⊆ D(M1) as above and set M =
M1M2. For an irreducible rational representation (Vτ , τ) (with τ = τν as above) of
D×R/R

× we denote by A(D×A, R
×
A, τ) the space of functions ϕ : D×A → Vτ satisfying

ϕ(γxu) = τ(u−1
∞ )ϕ(x) for γ ∈ D×Q and u = u∞uf ∈ R×A. It has been discovered by

Eichler that these functions are in correspondence with the elliptic modular forms
of weight 2 + 2ν and level M = M1M2. This correspondence can be described

as follows (using the double coset decomposition D×A =
h
∪
i=1

D×yiR
×
A from above):

Recall from Section 5 of [2] and Section 3 of [4] that for each p |M1M2 we have an
involution w̃p on the space A(D×A, R

×
A, τν) given by right translation by a suitable

element πp ∈ R×p of norm p normalizing Rp. This space then splits into common
eigenspaces of all these (pairwise commuting) involutions. On A(D×A, R

×
A, τν) we
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have furthermore for p - N Hecke operators T̃ (p) whose action on these functions is
expressed by the Brandt-matrices (B(ν)

ij (p)) (whose entries are endomorphisms of
Vτν ). They commute with the involutions w̃p. On the space A(D×A, R

×
A, τν) we have

moreover the natural inner product 〈 , 〉ν defined by integration, it is explicitly
given by

〈ϕ, ρ〉ν =
h∑
i=1

〈〈ϕ(yi), ρ(yi)〉〉(0)
ν

ei
.

By abuse of language we call (in the case ν = 0) forms cuspidal, if they are orthog-
onal to the constant functions with respect to this inner product.
We denote for p dividing M2 the p-essential part by Ap,ess(D×A, R

×
A, τ) consisting

of functions ϕ that are orthogonal to all ρ ∈ A(D×A, (R
′
A)×, τ) for orders R′ ⊇ R

for which the completion R′p strictly contains Rp. It is invariant under the T̃ (p) for
p -M1M2 and the w̃p for p |M1M2 and hence has a basis of common eigenfunctions
of all the T̃ (p) for p - N and all the involutions w̃p for p | N . Moreover by the
results of [7, 15, 23, 17] we know that in the space Aess(D×A, R

×
A, τ) of forms that

are p-essential for all p dividing M = M1M2 strong multiplicity one holds, i.e., each
system of eigenvalues of the T̃ (p) for p -M occurs at most once, and the eigenfunc-
tions are in one to one correspondence with the newforms in the space S2+2ν(M) of
elliptic cusp forms of weight 2 + 2ν for the group Γ0(M) that are eigenfunctions of
all Hecke operators (if τ is the trivial representation and R is a maximal order one
has to restrict here to cuspidal forms on the quaternion side in order to obtain cusp
forms on the modular forms side). This correspondence (Eichler’s correspondence)
preserves Hecke eigenvalues for p -M , and if ϕ corresponds to g ∈ S2+2ν(M) then
the eigenvalue of g under the Atkin-Lehner involution wp is equal to that of ϕ under
w̃p if D splits at p and equal to minus that of ϕ under w̃p if Dp is a skew field.
¿From (3.13) of [5] we know that if g having first Fourier coefficient 1 corresponds
in this way to ϕ with 〈ϕ,ϕ〉ν = 1 then 〈g, Θ̃(µ)(K)〉 = 〈g, g〉(ϕ(yi)⊗ ϕ(yj)) holds.
It is not difficult (see also [13]) to extend this correspondence to not necessarily
new forms g ∈ S2+2ν(N) in the following way:
Lemma 5.2 Let N = M1M2 be a decomposition as above. Call g̃ ∈ S2+2ν(N)
an M ′-new form if it is orthogonal to all oldforms coming from g′ ∈ S2+2ν(M ′)
for M ′ | N . Then Eichler’s correspondence from above extends to a one to one
correspondence between the set of all M1-new eigenforms of the Hecke operators
for p - N in S2+2ν(N) that are eigenfunctions of all the wp for p | M2 with the
set of all Hecke eigenfunctions in A(D×A, R

×
A, τ) that are eigenfunctions of all the

involutions w̃p. This correspondence is compatible with the Hecke action and the
eigenvalues under the respective involutions as above; it maps newforms of level
M ′ | N (with M1 |M ′) to forms that are p-essential precisely for the p | (M ′/M1).
The correspondence can be explicitly given (in a nonlinear way) by the first Yoshida
lifting sending ϕ̃ to the form

h∑
ij

〈〈ϕ̃(yi)⊗ ϕ̃(yj), Θ̃(2ν)(Iij)〉〉
eiej

,

it then sends ϕ̃ with 〈ϕ̃, ϕ̃〉ν = 1 to g̃ having first Fourier coefficient one. Moreover,
in this normalization it satisfies the scalar product relations from above, i. e. , if g̃
corresponds to ϕ̃ then 〈g̃, Θ̃(2ν)(Iij)〉〈ϕ̃, ϕ̃〉2ν = 〈g̃, g̃〉(ϕ̃(yi)⊗ ϕ̃(yj)) holds.
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Proof. Let M ′ be a divisor of N and g ∈ S2+2ν(M ′) and let ε be a function from
the set S of prime divisors of N/M ′ (whose cardinality we denote by ω(M/M ′))
to {±1}ω(M/M ′). Then the function gε :=

∑
S′⊆S

g|
∏
p∈S ε(p)wp) in S2+2ν(N) is

an eigenfunction of the Atkin-Lehner involutions wp for the p | (N/M ′) with
eigenvalues ε(p). Similarly, fix a maximal order R̃ ⊆ D and an Eichler order
R = R(M1,M2) ⊆ R̃, let M ′2 | M2 and let R(M1,M

′
2) be the Eichler order of level

M1M
′
2 in D containing R and contained in R̃. Let ε be a function on the set of

prime divisors of M2/M
′
2 as above. Then to ϕ ∈ Aess(D×A, (R(M1,M

′
2))×A, τ) we

construct as above a unique ϕε having the same Hecke eigenvalues for p - N and
the same w̃p-eigenvalues for p |M1M

′
2 as ϕ such that ϕε is an eigenfunction of the

w̃p for p | (M2/M
′
2) with eigenvalues ε(p).

Given an M1-new Hecke eigenform g̃ in S2+2ν(N) that is an eigenfunction of all
the wp for p | M2 with eigenvalues εp we then associate to it the newform g of
some level M ′ = M1M

′
2 | M1M2 that has the same Hecke eigenvalues for p - N

so that g̃ = gε with ε(p) = εp and apply Eichler’s correspondence to get a ϕ ∈
Aess(D×A, (R(M1,M

′
2))×A, τν). From [2] we know that this can be normalized such

that g is obtained from ϕ by Yoshida’s lifting. We then pass to the eigenfunction ϕε

of all w̃p with the same eigenvalues as g for p |M2. The scalar product relation (up
to normalization) follows then in the same way as in [5], using the uniqueness of the
given set of w̃p-eigenvalues and the fact that application of wp for p |M2 transforms
Θ̃(2ν)(Iij) to Θ̃(2ν)(Ii′j), where yi′ represents the double coset of yiπ−1

p (this is an
easy generalization of Lemma 9.1 a) of [2], see also [3]). The same argument shows
that Yoshida’s lifting realizes this correspondence (using the well known fact that
it gives the right Hecke eigenvalues for the p - N), and using the expression of gε

as a Yoshida lifting we find the correct normalization of the scalar product relation
as in [5].

We will need a version of the scalar product relation in Lemma 5.2 also for the case
of newforms of level strictly dividing the level of the theta series involved.

Lemma 5.3 Let M1,M
′
2 with M = M1M

′
2 dividing N be as before and let g

be a normalized newform of level M and weight k = 2 + 2ν as in the previous
Lemma; let S be the set of prime divisors of N/M . Put M2 = N/M ′2 and let
R′ = R(M1,M

′
2) and R = R(M1,M2) ⊆ R′ be Eichler orders of levels M,N re-

spectively in D(M1) and consider a double coset decomposition D×A = ∪hi=1D
×
QyiR

×
A

and corresponding quadratic lattices (ideals in D) Iij relative to R as before. Let
ϕ ∈ Aess(D×A, (R

′
A)×, τν) be the essential form corresponding to g under Eichler’s

correspondence (with 〈ϕ,ϕ〉ν = 1). Then

〈g, Θ̃(2ν)(Iij)〉 = 〈g, g〉
∑
S′⊆S

(∏
p∈S′

(̃wp)ϕ
)
(yi)⊗

(∏
p∈S′

(̃wp)ϕ
)
(yj)

)
(5.6)

Proof. Let ε be a function from the set of prime divisors of N/M to {±1}ω(N/M) and
let gε, ϕε be as in the proof of Lemma 5.2. Then gε corresponds to (ϕε)/

√
〈ϕε, ϕε〉ν)

under Yoshida’s correspondence, so we get

〈gε, Θ̃(2ν)(Iij)〉 =
〈gε, gε〉
〈ϕε, ϕε〉ν

ϕε(yi)⊗ ϕε(yj)(5.7)
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by Lemma 5.2. For any S′ ⊆ S the Petersson product 〈g, g|(
∏
p∈S′ ε(p)(wp))〉

is the same as the product of g with the image of g|(
∏
p∈S′ ε(p)(wp)) under the

trace operator from modular forms for Γ0(N) to modular forms for Γ0(M), hence
equal to

∏
p∈S′ ε(p)p

−νag(p)〈g, g〉, since for p - M the map g 7→ g|wp composed
with the trace just gives the (renormalized) Hecke operator. The same argument
applies to 〈ϕ, (

∏
p∈S′ ε(p)(̃wp)ϕ)〉 and gives the same factor of comparison with

〈ϕ,ϕ〉 since g and ϕ have the same (renormalized) Hecke eigenvalues. Thus we
have 〈gε, gε〉〈ϕε, ϕε〉−1 = 〈g, g〉〈ϕ,ϕ〉−1, and summing up the identities (5.7) for all
the functions ε gives the assertion.

Lemma 5.4 Let f, φ, ψ as in Section 2 be newforms of square free levels Nf , Nφ, Nψ
with N = lcm(Nf , Nφ, Nψ) and with weights ki = 2+2µi. Then in 5.5 the summand
for M1,M2,M3 is zero unless M3 = 1, N = M1M2 and M1 | gcd(Nf , Nφ, Nψ) hold.
Proof. Since by Lemma 5.2 we can express f, φ, ψ as Yoshida-liftings an easy
generalization of Lemma 9.1 b) of [2] shows that f is orthogonal to all Θ̃(µ1)(K)
for K in gen(M1,M2,M3) for which Nf does not divide M1M2 and analogously for
φ, ψ. This establishes the vanishing of all summands for which N 6= M1M2.
If there is a p | M1 not dividing gcd(Nf , Nφ, Nψ) then say p - Nf . The Petersson
product of f with Θ̃(2µ1)(K) for K in gen(M1,M2, 1) is then the same as that of
f with the form obtained by applying the trace operator from modular forms on
Γ0(N) to modular forms on Γ0(N/p) to the theta series. But it is easily checked
that this trace operator annihilates the theta series of K ∈ gen(M1,M2,M3) if
p | M1, see [8]; the same argument is applied to φ, ψ which shows the last part of
the assertion.

Lemma 5.5 Let f̃ , φ̃, ψ̃ be cusp forms of weights k1, k2, k3 for Γ0(N) with square
free N as in Section 2, assume them to be eigenforms of the Hecke operators for
p - N and of all the Atkin-Lehner involutions wp with eigenvalues εf (p), εφ(p), εψ(p)
but not necessarily newforms. Let M1M2 = N (with M1 as always having an odd
number of prime factors) and let R = R(M1,M2) be an Eichler order in D =
D(M1). Let ϕf , ϕφ, ϕψ be the forms in A(D×A, R

×
A, τνi) corresponding to f, φ, ψ

under the correspondence of Lemma 5.2 (with ki = 2 + 2µi for i = 1, . . . , 3). Then
the summand for M1,M2,M3 = 1 in 5.5 is

2−ω(N)αM1,M2,1〈f, f〉〈φ, φ〉〈ψ,ψ〉
h∑
i=1

(
T0(ϕf (yi)⊗ ϕφ(yi)⊗ ϕψ(yi))

ei

)2

.

The latter expression is zero unless for all p | N one has p | M1 if and only if
εf (p)εφ(p)εψ(p) = −1.
Proof. The first part of the assertion is an immediate consequence of Lemma 5.2
and the decomposition of T as T (0) ⊗ T (0). For the second part we notice that

the expression
h∑
i=1

(
T0(ϕf (yi)⊗ϕφ(yi)⊗ϕψ(yi))

ei

)
does not change if an involution w̃p

is applied to all three functions ϕf , ϕφ, ϕψ since this only permutes the order of
summation. On the other hand each summand is multiplied with the product of
the eigenvalues of ϕf , ϕφ, ϕψ under w̃p, which in view of the relation between the wp
eigenvalues and the w̃p-eigenvalues of corresponding functions proves the assertion.

Although the scalar product relation in Lemma 5.2 is not true if one omits the
condition that g̃ is an eigenfunction of all the involutions wp, the next Lemma
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shows that by an amusing newforms argument an only slightly changed version of
Lemma 5.5 (which is based on this scalar product relation) remains true without
this condition.

Lemma 5.6 Let f, φ, ψ be normalized newforms of levels Nf , Nφ, Nψ of weights
ki = 2 + 2µi (i = 1, . . . , 3) as in Section 2 and let Λ1,Λ2,Λ3 be pairwise disjoint
subsets of the set of primes divisors of Nf = N/Nf , N

φ, Nψ respectively such that
Λ1∪Λ2∪Λ3 is the set of all primes dividing precisely one of the integers Nf , Nφ, Nψ.
For κ = 1, . . . , 3 let

w̃Λκ =
∏
p∈Λκ

w̃p.

Let a decomposition N = M1M2 as before be given, fix a maximal order R̃ in
D = D(M1) and an Eichler order R = R(M1,M2) ⊆ R̃ of level M1M2 = N in D
and consider a double coset decomposition D×A = ∪hi=1D

×
QyiR

×
A and corresponding

quadratic lattices (ideals in D) Iij relative to R as before. For each M ′2 | M2 let
R(M1M

′
2) = R(M1,M

′
2) be the unique Eichler order of level M1M

′
2 contained in

R̃ and containing R. Let ϕ1 ∈ Aess(D×A, (R(Nf )×A, τµ1)) be the form corresponding
to f under Eichler’s correspondence and define ϕ2, ϕ3 analogously with respect to
φ, ψ. Then

(5.8) T
(
〈f, Θ̃(µ1)〉〈φ, Θ̃(µ2)〉〈ψ, Θ̃(µ3)〉

)
= 2−ω(gcd(Nf ,Nφ,Nψ))〈f, f〉〈φ, φ〉〈ψ,ψ〉

(
T0

( h∑
i=1

1
ei
w̃Λ1ϕ1(yi)⊗w̃Λ2ϕ2(yi)⊗w̃Λ3ϕ3(yi)

))2
Proof. This is an immediate consequence of Lemmas 5.2 and 5.3: Upon inserting
the scalar product relations from these lemmata into the left hand side of (5.8) we
obtain a sum of terms of the type(

T0(
( h∑
i=1

w̃Λ′1
ϕ1(yi)⊗ w̃Λ′2

ϕ2(yi)⊗ w̃Λ′3
ϕ3(yi)

))2
with arbitrary subsets Λ′κ of the sets of primes dividing N/Nf , N/Nφ, N/Nψ) re-
spectively. Let p be a prime dividing two of the levels, say p | Nf , p | Nφ. Then
since applying w̃p to all three of the ϕκ only changes the order of summation, the
involution w̃p for p ∈ Λ′3 may be pulled over to ϕ2, ϕ3 which are eigenfunctions of
w̃p. The terms with the set Λ′3 and those with Λ′3 \ {p} give therefore the same
contribution. Let now p be a prime dividing only one of the levels, say p | Nf .
If p 6∈ Λ′2 ∪ Λ′3 then the component of ϕ2 ⊗ ϕ3 in the τµ1-isotypic component of
τν2 ⊗ τν3 is an oldform with respect to p, hence orthogonal to the p-essential form
ϕ1. Since T0(ϕ1 ⊗ ϕ2 ⊗ ϕ3) is proportional to the scalar product of ϕ1 with this
component of ϕ1⊗ϕ2 such a term gives no contribution; the same argument applies
if p ∈ Λ′2 ∩ Λ′3 holds. If p is in precisely one of Λ′2,Λ

′
3 then the same argument as

in the first case shows that p may be shifted to either one of these sets without
changing the contribution of the term. Taking together both cases we find that all
terms appearing are of the shape(

T0(
( h∑
i=1

w̃Λ1ϕ1(yi)⊗ w̃Λ2ϕ2(yi)⊗ w̃Λ3ϕ3(yi)
))2
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with each term appearing 2ω(N/ gcd(Nf ,Nφ,Nψ)) times, which in view of 5.1 implies
the assertion.
Collecting all the information obtained we arrive at the main theorem:

Theorem 5.7 The value of the triple product L-function L(f, φ, ψ, s) at the central
critical value s = k1+k2+k3

2 − 1 is

(5.9) (−1)ω(N)+ω(M1,M2)25+3b+8a′−ω(gcd(Nf ,Nφ,Nψ)π5+6a′+2b

×N2(M1M2)−3M−6
3

1(
b
ν2

) b!(a′ + 1)[b]

2[a]2[a′](a+ 2)[b]

× (a′ + b+ 1)Γ(2a′ + b+ 2)
Γ(3a′ + b+ 2)Γ(a′ + ν2 + 1)Γ(a′ + ν3 + 1)

× 〈f, f〉〈φ, φ〉〈ψ,ψ〉
(
T0

( h∑
i=1

1
ei
w̃Λ1ϕ1(yi)⊗ w̃Λ2ϕ2(yi)⊗ w̃Λ3ϕ3(yi)

))2
where the notation is as in Lemma 5.6 and T0 is (as explained in the beginning
of this section) the up to scalars unique rational invariant trilinear form on the
representation space U

(0)
µ1/2

⊗ U
(0)
µ2/2

⊗ U
(0)
µ3/2

(with µi = ki − 2) and takes values
in the coefficient fields of f, φ, ψ respectively on the polynomials w̃Λ1ϕκ(yi) (for
κ = 1, . . . , 3)

It should be noted that the rational quantity on the right hand side can be inter-
preted as the height pairing of a diagonal cycle with itself in the same way as in
[11]. One has just to replace (for κ = 1, . . . , 3) the group Pic(X) of [11] with the
group Pic(Vκ) from [14] obtained by attaching to each yi in the double coset de-
composition of D×A used above the space of R×i -invariant polynomials in U (0)

µκ . Our
functions ϕκ may then be interpreted as elements of Pic(Vκ). One may then form
the tensor product of these three groups and obtain an analogue of the diagonal
cycle ∆ from [11] by using our Gegenbauer polynomials from above and proceed as
in loc. cit.
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