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Abstract. There exist two different generalizations of
the classical Saito–Kurokawa lifting to modular forms with
(square-free) level; one lifting produces modular forms with
respect to Γ0(m), the other one with respect to the paramod-
ular group Γpara(m). We shall give an alternative and uni-
fied construction of both liftings using group theoretic meth-
ods. The construction shows that a single elliptic modular
form may in fact have many Saito–Kurokawa liftings. We
also obtain precise information about the spin L–function of
the resulting Siegel modular forms.

Introduction

The classical Saito–Kurokawa lifting was discovered numerically in 1977, and its existence was
subsequently proved in a series of papers by Maass, Andrianov and Zagier; see [Ku], [Ma],
[An], [Za]. The book [EZ] gives a coherent treatment. Starting from a modular form f ∈
M2k−2(SL(2,Z)) with even k, assumed to be an eigenform for all Hecke operators, a Siegel
eigenform F of degree 2 and weight k is constructed such that the (finite parts of the) L–
functions of f and F are related by the formula

L(s, F ) = ζ(s− k + 1)ζ(s− k + 2)L(s, f).

The Saito–Kurokawa lifting can be constructed as the composition of two linear maps

M2k−2(SL(2,Z)) ∼−→ Jk,1 −→Mk(Sp(4,Z)), (1)

where Jk,1 is the space of Jacobi forms of weight k and index 1; see [EZ]. The first map is
obtained via the Shimura isomorphism, and the second map is called the Maaß lifting. In what
follows we shall restrict our attention to cusp forms and also to newforms. Given a positive
integer m, we can generalize the construction (1) as follows:

Snew−
2k−2 (Γ0(m)) ∼−→ Jcusp,new

k,m −→ Sk(Γpara(m)). (2)

Here the first isomorphism is the (inverse of the) Skoruppa–Zagier map constructed in [SZ]. The
“−” in Snew−

2k−2 (Γ0(m)) indicates the subspace of newforms such that the sign in the functional
equation of the L–function is −1. The second map in (2) is Gritsenko’s “arithmetical lifting”,
a generalization of the Maaß lifting; see [Gr]. The image is contained in the space of cusp
forms with respect to the paramodular group Γpara(m) of level m. This group is defined as the
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subgroup of all elements g ∈ Sp(4,Q) such that

g ∈


Z mZ Z Z

Z Z Z m−1
Z

Z mZ Z Z

mZ mZ mZ Z

 and det(g) = 1. (3)

At least when m is square-free (but see the recent work [MR1], [MR2]), there is another gen-
eralization of the construction (1) given in the paper [MRV]. Instead of working with Jacobi
forms of index m for the full modular group, the authors consider Jacobi forms of index 1 for a
congruence subgroup and construct a lifting

Snew
2k−2(Γ0(m)) ∼−→ Jcusp,new

k,1 (ΓJ0 (m)) −→ Sk(Γ
(2)
0 (m)). (4)

For this construction to work k must assumed to be even. Note that both constructions (2) and
(4) generalize the original lifting (1). The conditions “k even” and “the sign in the functional
equation is −1” coincide for m = 1.

Hence, starting with a newform f ∈ Snew−
2k−2 (Γ0(m)), where m is square-free and k is even, we

can construct two Siegel cusp forms F1 ∈ Sk(Γpara(m)) and F2 ∈ Sk(Γ
(2)
0 (m)). The purpose of

this paper is to give an alternative construction and to “explain” the existence of two different
Saito–Kurokawa liftings. It turns out that in some cases F1 and F2 correspond to two different
vectors in the same automorphic representation of PGSp(4,A), while in other cases F1 and F2

are vectors in different automorphic representations.

Actually, depending on the number of primes dividing the square-free integer m, a modular form
f can have many different Saito–Kurokawa liftings. Most of these liftings will be with respect
to “mixed” congruence subgroups, where we impose a Γ0–condition at some places p|m and a
paramodular condition at the other places. The automorphic representations containing these
modular forms are all nearly equivalent (meaning the local components are equivalent at almost
every place).

Our approach is based on the main result of [Sch2], which asserts the existence of certain
functorial liftings

from PGL(2)× PGL(2) to PGSp(4).

Such a lifting is predicted by Langlands functoriality. Let π be a cusp form on PGL(2,AF ),
where F is an arbitrary number field. Let Σ be the set of places of F such that the local
component πv is square-integrable (equivalently, not a principal series representation). For
S ⊂ Σ let πS be the non-cuspidal automorphic representation of PGL(2,AF ) such the πS,v is
the trivial representation for v /∈ S, and the Steinberg representation for v ∈ S. It was proved in
[Sch2] that the lifting of π⊗πS exists as a discrete series representation on PGSp(4,A), provided
the sign condition (−1)#S = ε(1/2, π) is fulfilled. The lifting is even cuspidal if S is non-empty.

Now let the number field be Q and let π be the cuspidal automorphic representation of PGL(2,A)
corresponding to the classical newform f ∈ Snew

2k−2(Γ0(m)). Assuming that m is square-free, the
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local components πp will be square-integrable precisely if p|m or p = ∞. We will see that the
two liftings (2) and (4) come from two different (non-empty) choices of the set of places S. The
sign condition (−1)#S = ε(1/2, π) comes down to the “−” condition in case of the lifting (2),
and to the condition that k be even in case of the lifting (4).

The local components of the lifting of π ⊗ πS to PGSp(4,A) have already been identified as
representations in [Sch2]. The bulk of the work of the present paper consists in analyzing these
local p–adic representations at the primes p dividing m with respect to their paramodular and
Γ0–fixvectors. This will allow us to extract from the automorphic representations we constructed
the Siegel modular forms we are interested in. To analyze the local representations, we realize
them as subrepresentations of certain induced representations of length 2. The spaces of Iwahori
fixed vectors on the full induced representations are easily determined. To find the intersections
with the subrepresentations of interest, we shall explicitly compute intertwining operators on
the spaces of Iwahori fixed vectors.

In section 1 we shall review the main lifting theorem of [Sch2], which lies at the heart of our
construction. In sections 2 and 3 we shall analyze the relevant local representations by explicitly
computing intertwining operators on certain spaces of induced representations. Actually we shall
determine the dimensions of spaces of fixed vectors for each parahoric subgroup of GSp(4, F ). In
section 4 we compute some Atkin–Lehner eigenvalues on the “local newforms” we found and show
that these eigenvalues coincide with the signs defined by the ε–factor, as in the GL(2) theory.
Finally, in section 5, we combine the global lifting theorem with the local results to reprove the
existence of the two different Saito–Kurokawa liftings mentioned above – and others. We also
obtain precise information on the spin L–function of these liftings.

Notations

Throughout the paper we let

G = GSp(4) =
{
g ∈ GL(4) : tgJg = λ(g)J for some λ(g) ∈ GL(1)

}
,

where

J =


1

1
−1

−1

 .

As a Borel subgroup B of G we choose upper triangular matrices. The two conjugacy classes of
proper maximal parabolic subgroups are represented by the Siegel parabolic subgroup P , whose
Levi factor is

MP =
{(

A
uA′

)
: u ∈ GL(1), A ∈ GL(2)

}
' GL(1)×GL(2),
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where A′ :=
(

1
1

)
tA−1

(
1

1

)
, and the Klingen parabolic subgroup Q, whose Levi factor is

MQ =


 u

A
u−1 det(A)

 : u ∈ GL(1), A ∈ GL(2)

 ' GL(1)×GL(2).

If F is a local field, we shall employ the notations of [ST] for induced representations of the
group GSp(4, F ). We shall write ν(x) = |x| for the normalized absolute value on the local field
F .

Parahoric subgroups

Let F be a p–adic field, o its ring of integers, and $ a generator of the maximal ideal p of o.
The two matrices

s1 =


1

1
1

1

 , s2 =


1

1
−1

1

 , (5)

are representatives for the two simple reflections generating the 8–element Weyl group W of
G = GSp(4, F ). The Atkin–Lehner element is the matrix

η =


1

1
−$

−$

 s2s1s2 =


1

1
$

$

 ∈ GSp(4, F ). (6)

While η commutes with s1, we let s0 = ηs2η
−1. Consider the Dynkin diagram of the affine Weyl

group C2:

• • •
s0 s1 s2

Let I be the Iwahori subgroup, the inverse image of the minimal parabolic subgroup under
the projection map G(o) → G(o/p). The parahoric subgroups PA of GSp(4, F ) correspond
bijectively to subsets A of {0, 1, 2}, the correspondence being that the parahoric subgroup PA
is generated by I and {si : i ∈ A}. Hence P1 is the Siegel congruence subgroup, the inverse
image of the Siegel parabolic subgroup under the projection map G(o)→ G(o/p), and P2 is the
Klingen congruence subgroup, the inverse image of the Klingen parabolic subgroup under the
same map. The group P02 is generated by P2 and ηP2η

−1, and is called the paramodular group;
it is explicitly given as the set of all g ∈ GSp(4, F ) such that

g ∈


o o o p−1

p o o o

p o o o

p p p o

 and det(g) ∈ o∗. (7)
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This is the local analogue of the global group (3). The paramodular group represents one of the
two conjugacy classes of maximal compact subgroups of GSp(4, F ). The other conjugacy class
is represented by the standard maximal compact subgroup P12 = G(o).

1 The main lifting result

In this section we recall the main result of [Sch2]; we refer to that paper for more details. Let
F be a number field and A its ring of adeles. For each finite set S of places of F we have an
automorphic representation πS = ⊗πS,v of PGL(2,A) defined by

πS,v =
{

1GL(2) if v /∈ S,
StGL(2) if v ∈ S.

Here 1GL(2) is the trivial representation and StGL(2) is the Steinberg representation of PGL(2).
The global representation πS thus defined is automorphic since it is an irreducible constituent
of a globally induced representation.

Let πv be an irreducible, admissible, infinite-dimensional representation of the local group
PGL(2, Fv), where v is any place of F . We have defined in [Sch2] an irreducible, admissible
representation Π(πv ⊗ 1v) of PGSp(4, Fv) as the unique irreducible quotient of the induced rep-
resentation ν1/2πv o ν−1/2. Assuming that πv is square-integrable, we have moreover defined
a (tempered) representation Π(πv ⊗ Stv) of PGSp(4, Fv) be means of certain theta liftings. If
π = ⊗πv is a cuspidal automorphic representation of PGL(2,A), and S is a set of places such that
πv is square integrable for each v ∈ S, define a global representation Π(π ⊗ πS) of PGSp(4,A)
as the tensor product ⊗Π(πv ⊗ πS,v).

1.1 Theorem. Let π = ⊗πv be a cusp form on PGL(2,A). Let S be a set of places of F such
that πv is a discrete series representation for each place v ∈ S, and let πS be the corresponding
(non-cuspidal) automorphic representation defined above. Assume that the sign condition

(−1)#S = ε(1/2, π) (8)

is fulfilled. Then:

a) The global lifting Π(π⊗πS) is an automorphic representation of PGSp(4,A) which appears
discretely in the space of automorphic forms.

b) If L(1/2, π) = 0 or if S 6= ∅, then Π(π ⊗ πS) is a cuspidal automorphic representation.

Given the results of Waldspurger [Wa1], [Wa2] and Piatetski-Shapiro [PS], this theorem
is not too hard to prove. The main point of [Sch2] was to show that if one believes in what is
currently conjectured about the local Langlands correspondence for GSp(4), the representation
Π(π ⊗ πS) is a functorial lifting of the representation π ⊗ πS on PGL(2,A)× PGL(2,A), as the
notation suggests.

We now describe the local representations Π(πv⊗πS,v) in more detail, starting with the archime-
dean case. Since we are dealing with classical holomorphic modular forms, let us assume that
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F = Q, that v is the real place and that πv = D(2k − 3), the holomorphic discrete series
representation of PGL(2,R) with a lowest weight vector of weight 2k − 2. In our situation we
shall always choose S to contain the archimedean place, hence we need only describe Π(πv⊗Stv).
Here Stv is the lowest discrete series representation D(1), and it was determined in [Sch2] (see
also [La]) that Π(πv⊗Stv) is the holomorphic discrete series representation of PGSp(4,R) with a
scalar minimal K–type of weight (k, k). It is these representations which appear as archimedean
components of automorphic representations corresponding to holomorphic Siegel modular forms
of weight k, see [AS].

Considering a finite place p|m, the local component πp (of the automorphic representation π
corresponding to the modular form f ∈ Snew

2k−2(Γ0(m)), where m is square-free), can only be
the Steinberg representation St or its non-trivial unramified twist ξSt; here ξ is the unique
non-trivial unramified quadratic character of Q∗p. Consequently there are four possible lifts, and
these have been identified in [Sch2] as follows.

representation name description

Π(St⊗ 1) L((ν1/2St, ν−1/2)) subrepresentation of 1F ∗ o 1GL(2)

Π(St⊗ St) τ(T, ν−1/2) subrepresentation of ν1/21GL(2) o ν
−1/2

Π(ξSt⊗ 1) L((ξν1/2St, ν−1/2)) subrepresentation of ξν1/21GL(2) o ξν
−1/2

Π(ξSt⊗ St) θ10 supercuspidal

(9)

The first three representations in this list are named as in [ST]. In the following sections we shall
determine the dimensions of their spaces of fixed vectors under each parahoric subgroup. The
fourth representation was investigated in [KPS]. Being supercuspidal it has no Iwahori invariant
vectors. In our choices of the set of places S we shall avoid the constellation ξSt ⊗ St. Hence
θ10 plays little role in our investigations.

2 Invariant vectors in Π(St⊗ St) and Π(ξ St⊗ 1)

In this section we shall work over a p-adic field F , with the symbols o, p, q having the usual
meaning. We shall fix a generator $ of p. Consider the degenerate principal series representation

ξνs1GL(2) o ξ
−1ν−s, ξ an unramified character of F ∗, s ∈ C. (10)

Let Vξ,s be the standard model for this induced representation, consisting of smooth functions
f : G(F )→ C with the transformation property

f

((
A ∗
uA′

)
g

)
= ξ(u−1 det(A)) |u−1 det(A)|s+3/2 f(g).

According to the table (9), two of our local Saito–Kurokawa lifts appear as constituents of some
Vξ,s, namely Π(St⊗St) as a constituent of V1,1/2, and Π(ξ St⊗1) as a constituent of Vξ,1/2, where
ξ is the non-trivial unramified quadratic character of F ∗. To characterize subrepresentations of
Vξ,s, we shall study an intertwining operator A(s) : Vξ,s −→ Vξ−1,−s, given by

(A(s)f)(g) =
∫
N

f(s2s1s2ng) dn, (11)
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where N =
(

1 ∗
1

)
is the unipotent radical of the Siegel parabolic P , and where s1, s2 are the

Weyl group elements defined in (5).

2.1 Proposition. Assume ξ is an unramified character of F ∗. The intertwining operator A(s)
defined by (11) is convergent for Re(s) large enough. It has meromorphic continuation to all of C
with possible poles at those values s ∈ C where q−s±1/2 = ξ($)−1 or where q−2s = ξ($)−2. At all
other values of s it defines a non-zero intertwining map ξνs1GL(2)oξ

−1ν−s → ξ−1ν−s1GL(2)oξν
s.

Proof: Let f be a function in Vξ,s. Let Ci ⊂ F be compact sets containing 0. One can proof in
a standard manner that for large enough Ci the integral

I :=
∫

F\C3

∫
F\C2

∫
F\C1

f




1
1

µ x 1
κ µ 1

 s2s1s2

 dx dµ dκ, Re(s)� 0,

is given by

I =
polynomial function in q−s

(1− ξ($)q−s+1/2)(1− ξ($)2q−2s)(1− ξ($)q−s−1/2)
f(1).

Other parts of the integral, such as
∫ ∫ ∫

C3×(F\C2)×(F\C1) . . . dx dµ dκ, lead to similar expres-
sions. This settles the convergence question. Replacing f by a flat section fs, it also proves
the assertion about analytic continuation. In the region of convergence it is easily seen that
A(s)fs has the required transformation property, and that A(s) is an intertwining operator.
The same is then true for all s by analytic continuation. It will become apparent by the explicit
computations further below that A(s) is a non-zero map.

Let I ⊂ G(o) be the Iwahori subgroup, i.e., the inverse image of B(o/p) under the projection
G(o)→ G(o/p) (in our realization of G(o), these are all matrices that become upper triangular
mod p). Our goal is to determine the space of I–invariant vectors in Π(St⊗St) and Π(ξ St⊗1),
where ξ denotes the unique nontrivial unramified quadratic character of F ∗, characterized by
ξ($) = −1. The desired information will be obtained by considering the intertwining operator
(11) on the space of I–invariant vectors of the degenerate principal series representations (10).

For the moment let ξ be any unramified character of F ∗. As in the previous section, let Vξ,s
be the standard space of the induced representation ξνs1GL(2) o ξ−1ν−s. Let V I

ξ,s denote the
subspace of I–invariant vectors. Via restriction to G(o) the functions in V I

ξ,s are in bijection
with the left P (o)-invariant and right I–invariant functions on G(o). Since

P (o)\G(o)/I ' P (o/p)\G(o/p)/B(o/p)

is represented by the four Weyl group elements 1, s2, s2s1 and s2s1s2, any f ∈ V I
ξ,s is determined

by the four numbers

α := f(1), β := f(s2), γ := f(s2s1), δ := f(s2s1s2). (12)
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In particular, dimC(V I
ξ,s) = 4. We are going to compute A(s)f for such a function f . Since

A(s)f is again I–invariant, we only have to compute (A(s)f)(w) for w ∈ {1, s2, s2s1, s2s1s2}.
This is achieved by the following three lemmas.

2.2 Lemma. Let f ∈ V I
ξ,s and α, β, γ, δ as in (12). Then, for any unramified character ξ,

∫
F

f




1
1

1
κ 1

w

 dκ =



q−1α+
1− q−1

1− ξ($)q−s−1/2
γ, w = 1,

q−1β +
1− q−1

1− ξ($)q−s−1/2
δ, w = s2,

q−1α+
1− q−1

1− ξ($)q−s−1/2
β, w = s1,

q−1γ +
1− q−1

1− ξ($)q−s−1/2
δ, w = s2s1,

β +
(1− q−1)ξ($)q−s−1/2

1− ξ($)q−s−1/2
α, w = s1s2,

δ +
(1− q−1)ξ($)q−s−1/2

1− ξ($)q−s−1/2
γ, w = s2s1s2,

γ +
(1− q−1)ξ($)q−s−1/2

1− ξ($)q−s−1/2
α, w = s1s2s1,

δ +
(1− q−1)ξ($)q−s−1/2

1− ξ($)q−s−1/2
β, w = s2s1s2s1.

Proof: If the conjugation g 7→ w−1gw moves the κ–variable to a positive root, we split the
integral as

∫
o +
∫
F\o, otherwise as

∫
p +
∫
F\p. The first integral can then trivially be computed,

while for the second one one uses(
1
κ 1

)
=
(
−κ−1

−κ

)(
1 κ

1

)(
1

−1

)(
1 κ−1

1

)
(13)

and proceeds in a standard manner.

2.3 Lemma. With f as in Lemma 2.2 define

B(w) :=
∫
F 2

f




1
1

µ 1
κ µ 1

w

 dµ dκ.
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Then B(w) =

=



q−2α+
(1− q−1)q−1(1 + ξ($)q−s+1/2)

1− ξ($)2q−2s
γ +

1− q−1

1− ξ($)2q−2s
δ, w = 1,

q−2β +
(1− q−1)q−1

1− ξ($)2q−2s
γ +

(1− q−1)(1 + ξ($)q−s−1/2)
1− ξ($)2q−2s

δ, w = s2,

q−2α+
(1− q−1)q−1(1 + ξ($)q−s+1/2)

1− ξ($)2q−2s
β +

1− q−1

1− ξ($)2q−2s
δ, w = s1,

(1− q−1)ξ($)2q−2s−1

1− ξ($)2q−2s
β + q−1γ +

(1− q−1)(1 + ξ($)q−s−1/2)
1− ξ($)2q−2s

δ, w = s2s1,

(1− q−1)ξ($)q−s−1/2(1 + ξ($)q−s−1/2)
1− ξ($)2q−2s

α+ q−1β +
1− q−1

1− ξ($)2q−2s
γ, w = s1s2,

(1− q−1)ξ($)2q−2s−1

1− ξ($)2q−2s
α+

(1− q−1)ξ($)q−s−1/2(1 + ξ($)q−s+1/2)
1− ξ($)2q−2s

γ + δ, w = s2s1s2,

(1− q−1)ξ($)q−s−1/2(1 + ξ($)q−s−1/2)
1− ξ($)2q−2s

α+
(1− q−1)ξ($)2q−2s

1− ξ($)2q−2s
β + γ, w = s1s2s1,

(1− q−1)ξ($)2q−2s−1

1− ξ($)2q−2s
α+

(1− q−1)ξ($)q−s−1/2(1 + ξ($)q−s+1/2)
1− ξ($)2q−2s

β + δ, w = s2s1s2s1.

This holds for any unramified character ξ.

Proof: If the conjugation g 7→ w−1gw moves the µ–variable to a positive root, we split the
µ–integral as

∫
o +
∫
F\o, otherwise as

∫
p +
∫
F\p. Then one uses

1
1

µ 1
κ µ 1

 =


−µ−1 −1
µ−2κ −µ−1 −1

−µ
−κ −µ




1
1

1
κµ−2 1



·


1

1
−1

−1


︸ ︷︷ ︸

=s2s1s2


1 µ−1

1 µ−1

1
1

 (14)

on the second integral and Lemma 2.2.

2.4 Lemma. With f and ξ as in the previous lemmas, we have

(A(s)f)(w) =
∫
F 3

f




1
1

µ x 1
κ µ 1

 s2s1s2w

 dx dµ dκ
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=



(1− q−1)ξ($)2q−2s(1− ξ($)q−s−3/2)
(1− ξ($)2q−2s)(1− ξ($)q−s+1/2)

α+
(1− q−1)ξ($)q−s−1/2

1− ξ($)q−s+1/2
β

+
(1− q−1)ξ($)q−s+1/2

1− ξ($)q−s+1/2
γ + δ, w = 1,

(1− q−1)ξ($)q−s−3/2

1− ξ($)q−s+1/2
α+ q−1γ +

(1− q−1)
1− ξ($)q−s+1/2

δ

+
(1− q−1)ξ($)q−s−1/2(1− q−1 + ξ($)q−s+1/2 − ξ($)2q−2s)

(1− ξ($)2q−2s)(1− ξ($)q−s+1/2)
β, w = s2,

(1− q−1)ξ($)q−s−3/2

1− ξ($)q−s+1/2
α+ q−2β +

(1− q−1)
1− ξ($)q−s+1/2

δ

+
(1− q−1)q−1(1− ξ($)q−s−1/2 + ξ($)2q−2s+1 − ξ($)2q−2s)

(1− ξ($)2q−2s)(1− ξ($)q−s+1/2)
γ, w = s2s1,

q−3α+
(1− q−1)q−2

1− ξ($)q−s+1/2
β +

(1− q−1)q−1

1− ξ($)q−s+1/2
γ

+
(1− q−1)(1− ξ($)q−s−3/2)

(1− ξ($)2q−2s)(1− ξ($)q−s+1/2)
δ, w = s2s1s2.

Proof: One has to split the x-integration and then use
1

1
µ x 1
κ µ 1

 =


1

−µx−1 −x−1 −1
−x
−µ 1




1
1

−µx−1 1
κ− µ2x−1 −µx−1 1



·


1

1
−1

1




1
1 x−1

1
1

 (15)

and Lemma 2.3.

2.5 Proposition. Let Vξ,s be the standard space of the induced representation ξνs1GL(2) o

ξ−1ν−s.

i) For each flat section fs ∈ V1,s and each g ∈ G(F ), the limit

lim
s→−1/2

(A(s)fs)(g) (16)

exists. This defines a non-zero intertwining operator A(−1/2) : V1,−1/2 −→ V1,1/2. With
respect to a suitable basis, the restriction of this operator to the four-dimensional spaces
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of I–invariant vectors has matrix
q−1 −q−1 −1 1

−q−2 q−2 q−1 −q−1

−q−2 q−2 q−1 −q−1

q−3 −q−3 −q−2 q−2

 . (17)

ii) Let ξ be the non-trivial unramified quadratic character of F ∗. For each flat section fs ∈ Vξ,s
and each g ∈ G(F ), the limit

lim
s→1/2

(A(s)fs)(g) (18)

exists. This defines a non-zero intertwining operator A(1/2) : Vξ,1/2 −→ Vξ,−1/2. With
respect to a suitable basis, the restriction of this operator to the four-dimensional spaces
of I–invariant vectors has matrix

1
2(1 + q−2)q−1 −1

2(1− q−1)q−1 −1
2(1− q−1) 1

−1
2(1− q−1)q−2 q−2 q−1 1

2(1− q−1)

−1
2(1− q−1)q−2 q−2 q−1 1

2(1− q−1)

q−3 1
2(1− q−1)q−2 1

2(1− q−1)q−1 1
2(1 + q−2)

 . (19)

Proof: We prove i), the argument for ii) being very similar. From the formulas in Lemma
2.4 it is clear that the limit (16) exists for each g, provided fs is an I–invariant section. Let
V ⊂ V1,−1/2 be the G-invariant subspace generated by the I–invariant functions. Each f ∈ V
lies in a unique flat section fs, and we can define

(A(−1/2)f)(g) := lim
s→−1/2

(A(s)fs)(g).

The limit exists since f is a linear combination of right translates of I–invariant functions, and
g in (16) is arbitrary. Taking the limit on

(A(s)fs)(gh) = (A(s)fhs )(g)

shows that A(−1/2) defines an intertwining operator V → V1,s. Now let f1, f2, f3, f4 be the basis
of V I

ξ,−1/2 such that the vectors (α, β, γ, δ) as in (12) run through the standard unit vectors. With
respect to this basis and the analogous one for V I

1,1/2 it is easily computed from Proposition 2.4
that A(−1/2) has the matrix given by (17). This matrix has rank 1. In particular, A(−1/2)
is neither zero nor injective, and so V cannot be irreducible. Since we know the length of
ν−1/21GL(2) o ν

1/2 is 2, it follows that V is all of V1,−1/2.
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2.6 Corollary. i) The representation Π(St⊗ St) = τ(T, ν−1/2) has no non-zero G(o)–fixed
vector and, up to multiples, a unique non-zero I–invariant vector. If τ(T, ν−1/2) is realized
as a subrepresentation of ν1/21GL(2) o ν−1/2, then the I–invariant function f is given by
the values

(f(1), f(s2), f(s2s1), f(s2s1s2)) = (1,−q−1,−q−1, q−2). (20)

This function is even P1–invariant (see the section notations).

ii) Let ξ be the non-trivial unramified quadratic character of F ∗. The representation Π(ξ St⊗
1) = L((ν1/2ξ StGL(2), ν

−1/2)) has no non-zero G(o)–invariant vector, but has a two-
dimensional subspace of I–invariant vectors. The representation can be realized as a
subrepresentation of ξν1/21GL(2) o ξν−1/2 in such a way that the space of I–invariant
functions f is spanned by the functions given by

(f(1), f(s2), f(s2s1), f(s2s1s2)) = (−(1 + q)q2, (1− q)q, (1− q)q, 1 + q) (21)

and

(f(1), f(s2), f(s2s1), f(s2s1s2)) = (−q2, −q2, 1, 1). (22)

In fact, the function (21) is P1–invariant, and the function (22) is P2–invariant.

Proof: i) From the previous proposition we get a non-zero and non-injective intertwining oper-
ator

A(−1/2) : ν−1/21GL(2) o ν
1/2 −→ ν1/21GL(2) o ν

−1/2.

On I–invariant vectors A(s) has rank 1, by (17), thus one of the two constituents of ν−1/21GL(2)o

ν1/2 contains a three-dimensional space of I–invariant vectors, the other one a one-dimensional
space. The spherical vector in V1,−1/2 has (α, β, γ, δ) = (1, 1, 1, 1) and lies in the kernel of
A(s). Therefore this kernel is isomorphic to L((ν, 1F ∗ o ν−1/2)), the spherical constituent of
ν1/21GL(2) o ν−1/2; see [ST], Lemma 3.8. It follows that the image of A(−1/2) in V1,1/2 is
isomorphic to τ(T, ν−1/2) and contains an essentially unique I–invariant vector. Its explicit
form can be read off from (17). The function is obviously right-invariant under s1 and therefore
under P1.

The argument for ii) is very similar. The relevant matrix (19) has rank 2, its kernel is spanned by
t(−(1 + q)q2, (1− q)q, (1− q)q, 1 + q) and t(−q2,−q2, 1, 1). The function (21) is right invariant
under s1 and therefore under P1. The function f as in (22) is right invariant under s2 and
therefore under P2.

3 Invariant vectors in Π(St⊗ 1)

We shall now investigate the p–adic properties of the non-tempered representation Π(St⊗ 1) =
L((ν1/2St, ν−1/2)). By [ST], Lemma 3.8, it occurs as a subrepresentation of 1F ∗ o 1GL(2) (in-
duction from the parabolic Q). We therefore consider the family of induced representations

νs o ν−s/21GL(2), s ∈ C,
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and apply a similar method as in the previous section. Let Vs be the standard model for
νs o ν−s/21GL(2), i.e., Vs consists of locally constant functions f : G(F )→ C that transform as

f

 u ∗ ∗
A ∗

u−1 det(A)

 g

 = |u|2+s|det(A)|−s/2−1f(g), u ∈ F ∗, A ∈ GL(2, F )

(the modular factor of the parabolic Q is |u4 det(A)−2|). Let V I
s be the subspace of I–invariant

vectors. Restricting functions in Vs from G(F ) to G(o) is an injective operation, thus V I
s is

isomorphic to the space of functions G(o)→ C that are left Q(o)–invariant and right I–invariant.
Now

Q(o)\G(o)/I ' Q(o/p)\G(o/p)/B(o/p).

Since s2 ∈ Q, a complete set of representatives for this double coset space is {1, s1, s1s2, s1s2s1}.
It follows that dimC(V I

s ) = 4; any f ∈ V I
s is determined by the values

α := f(1), β := f(s1), γ := f(s1s2), δ := f(s1s2s1), (23)

and these values can be chosen arbitrarily. We would like to determine, for s = 0, the intersection
of V I

s with a subspace W0 of V0 that carries the representation L((ν1/2St, ν−1/2)). For this
purpose we consider the intertwining operator A(s) : Vs −→ V−s defined by

(A(s)f)(g) =
∫
H

f(wlng) dn, wl = s2s1s2s1 =


1

1
−1

−1

 . (24)

Here H is the unipotent radical of the parabolic Q.

3.1 Proposition. The intertwining operator A(s) defined by (24) is convergent for Re(s) > 1.
It has meromorphic continuation to all of C with possible poles at points s ∈ C where q−s±1 = 1
or q−2s = 1, and defines a non-zero intertwining map νs o ν−s/21GL(2) → ν−s o νs/21GL(2).

Proof: The proof is analogous to that of Proposition 2.1.
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3.2 Lemma. With f as in (23), we have for Re(s) > −1 and w ∈W

∫
F

f




1
λ 1

1
−λ 1

w

 dλ =



q−1α+
1− q−1

1− q−s−1
β, w = 1,

q−1α+
1− q−1

1− q−s−1
γ, w = s2,

β +
(1− q−1)q−s−1

1− q−s−1
α, w = s1,

q−1β +
1− q−1

1− q−s−1
δ, w = s2s1,

γ +
(1− q−1)q−s−1

1− q−s−1
α, w = s1s2,

q−1γ +
1− q−1

1− q−s−1
δ, w = s2s1s2,

δ +
(1− q−1)q−s−1

1− q−s−1
β, w = s1s2s1,

δ +
(1− q−1)q−s−1

1− q−s−1
γ, w = s2s1s2s1.

Proof: If the conjugation g 7→ w−1gw moves the λ–variable to a positive root, we split the
integral as

∫
o +
∫
F\o, otherwise as

∫
p +
∫
F\p. In either case the first integral is trivial, while the

second one can be computed using (13).

3.3 Lemma. With f as in (23), define

B(w) :=
∫
F

f




1
λ 1

1
κ −λ 1

w

 dλ, w ∈W.
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Then, for Re(s) > 0,

B(w) =



q−2α+
(1− q−1)q−1

1− q−s
β +

1− q−1

1− q−s
δ, w = 1,

q−2α+
(1− q−1)q−1

1− q−s
γ +

1− q−1

1− q−s
δ, w = s2,

(1− q−1)q−s−1

1− q−s
α+ q−1β +

1− q−1

1− q−s
γ, w = s1,

q−2β +
(1− q−1)q−1

1− q−s
γ +

1− q−1

1− q−s
δ, w = s2s1,

(1− q−1)q−s−1

1− q−s
α+

(1− q−1)q−s

1− q−s
β + γ, w = s1s2,

(1− q−1)q−s−1

1− q−s
β + q−1γ +

1− q−1

1− q−s
δ, w = s2s1s2,

(1− q−1)q−s−1

1− q−s
α+

(1− q−1)q−s

1− q−s
β + δ, w = s1s2s1,

(1− q−1)q−s−1

1− q−s
α+

(1− q−1)q−s

1− q−s
γ + δ, w = s2s1s2s1.

Proof: If the conjugation g 7→ w−1gw moves the κ–variable to a positive root, we split the
κ–integration as

∫
o +
∫
F\o, otherwise as

∫
p +
∫
F\p. We then use the formula

1
λ 1

1
κ −λ 1

 =


κ−1 κ−1λ 1

1 κ−1λ2 λ
1

κ




1
κ−1λ 1

1
−κ−1λ 1



·


1

1
1

−1


︸ ︷︷ ︸

=s1s2s1


−1 −κ−1

1
1
−1

 (25)

on the second integral and Lemma 3.2.

The intertwining operator A(s) induces a linear map between the four-dimensional spaces V I
s

and V I
−s. Using Lemma 3.3, we can now explicitly compute this linear map.
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3.4 Lemma.

(A(s)f)(w) =



(1− q−1)q−s−1

1− q−s+1
α+

(1− q−1)q−s

1− q−s+1
β +

(1− q−1)q−s+1

1− q−s+1
γ + δ, w = 1,

(1− q−1)q−s−1

1− q−s+1
α+

(1− q−1)q−s

1− q−s+1
β + q−1γ +

1− q−1

1− q−s+1
δ, w = s1,

(1− q−1)q−s−1

1− q−s+1
α+ q−2β +

(1− q−1)q−1

1− q−s+1
γ +

1− q−1

1− q−s+1
δ, w = s1s1,

q−3α+
(1− q−1)q−2

1− q−s+1
β +

(1− q−1)q−1

1− q−s+1
γ +

1− q−1

1− q−s+1
δ, w = s1s2s1.

Proof: One uses the matrix identity
1
λ 1
µ 1
κ µ −λ 1

 =


−µ−1 1

−µ−1 −λ− κµ−1 1
−µ

−µ



·


1

−κµ−1 1
1

−µ−2κ+ µ−1λ κµ−1 1




1
1

−1
−1


︸ ︷︷ ︸

=s2s1s2


1 −µ−1

1 −µ−1

1
1


(26)

and the results of the previous lemma.

3.5 Proposition. For each flat section fs ∈ νs1GL(2) o ν
−s and each g ∈ G(F ), the limit

lim
s→0

(A(s)fs)(g) (27)

exists. This defines a non-zero intertwining operator

A(0) : 1F ∗ o 1GL(2) −→ 1F ∗ o 1GL(2).

With respect to a suitable basis, the restriction of this operator to the four-dimensional space
of I–invariant vectors has matrix

−q−2 −q−1 −1 1

−q−2 −q−1 q−1 −q−1

−q−2 q−2 −q−2 −q−1

q−3 −q−3 −q−2 −q−1

 . (28)
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Proof: We argue as in Proposition 2.5. It follows from the formulas in Lemma 3.4 that the limit
(27) exists for each g, provided fs is an I–invariant section. Let W ⊂ V0 be the G–invariant
subspace generated by the I–invariant functions. Each f ∈ W lies in a unique flat section fs,
and we can define

(A(0)f)(g) := lim
s→0

(A(s)fs)(g).

The limit exists since f is a linear combination of right translates of I–invariant functions, and
g in (27) is arbitrary. This defines an intertwining operator A(0) : W → V0. Now consider the
basis of V I

0 consisting of those four functions f such that (α, β, γ, δ) as defined in (23) are the
standard unit vectors. With respect to this basis it is easily computed from Lemma 3.4 that the
endomorphism of V I

0 induced by A(0) has the matrix given by (28). This matrix is invertible,
with characteristic polynomial

χA(0)(X) = (X + q−2 + q−1)3(X − q−2 − q−1).

It follows that the intertwining operator

A(0)− (q−2 + q−1)idV0 : W −→ V0

is neither zero nor injective, and so W cannot be irreducible. Since we know the length of
1F ∗ o 1GL(2) is 2, it follows that W = V0.

3.6 Corollary. The representation Π(St⊗1) = L((ν1/2St, ν−1/2)) has no non-zero P1–invariant
vector, but a non-zero I–invariant vector, unique up to multiples. If the representation is realized
as a subrepresentation of 1F ∗ o 1GL(2), then the I–invariant function f is given by the values

(f(1), f(s1), f(s1s2), f(s1s2s1)) = (1,−q−1,−q−1, q−2). (29)

This function is even invariant under the Klingen congruence subgroup P2.

Proof: From Proposition 3.5 we get a non-zero and non-injective intertwining operator

ϕ := A(0)− (q−2 + q−1)idV0 : 1F ∗ o 1GL(2) −→ 1F ∗ o 1GL(2).

Let W ⊂ V0 be the kernel of ϕ. It follows from (28) that W contains a unique I–invariant
function (up to scalars), namely the one given by (29). Since s1 ∈ P1, this function is not P1–
invariant. It is therefore also not G(o)–invariant. Since the unique spherical constituent of 1F ∗o
1GL(2) is L((ν, 1F ∗ o ν−1/2)) (see [ST], Lemma 3.8), it follows that W carries the representation
L((ν1/2St, ν−1/2)). The vector (29) is P2–invariant since it is obviously s2–invariant.

4 Atkin–Lehner involutions and ε–factors

We consider the Atkin–Lehner element η defined in (6). Since η normalizes the Iwahori sub-
group I, the operator π(η) acts on the space of I–invariant vectors, for any representation π of
GSp(4, F ). If π has trivial central character, then π(η) acts as an involution, because η2 = $1.
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We call these operators Atkin–Lehner involutions. They split the spaces of I–invariant vectors
into ±1–eigenspaces. If v is an eigenvector, we call its eigenvalue the Atkin–Lehner eigenvalue
of v. The Atkin–Lehner involutions also act on the space of P1–invariant vectors and on the
space of P02–invariant vectors, since these parahoric subgroups are also normalized by η.

Consider the representation Π = Π(St ⊗ St) = τ(T, ν−1/2) with its one-dimensional space of
I–invariant vectors given explicitly in Corollary 2.6 i). Let f be the P1–invariant function given
by

(f(1), f(s2), f(s2s1), f(s2s1s2)) = (1,−q−1,−q−1, q−2)

in the standard induced model of ν1/21GL(2)o ν
−1/2. The eigenvalue of Π(η) on f is very easily

computed: We have

(Π(η)f)(1) = f(η) = | −$−1|2f(s2s1s2) = 1 = f(1),

and similarly (Π(η)f)(w) = f(w) for w ∈ {s2, s2s1, s2s1s2}. Thus Π(η)f = f , and the Atkin–
Lehner eigenvalue of f is 1.

Next consider the representation Π = Π(ξ St ⊗ 1) = L((ν1/2ξ StGL(2), ν
−1/2)), where ξ is the

unramified quadratic character of F ∗. According to Corollary 2.6 ii), we now have a two-
dimensional space of I–invariant vectors. A computation very similar to the one above shows
that

Π(η)f = f for each I–invariant f ∈ Π(ξ St⊗ 1) ⊂ ξν1/21GL(2) o ξν
−1/2.

In other words, the Atkin–Lehner eigenvalue is 1 on the whole space of I–invariant vectors. This
also implies that the vector (22) is not only invariant under P2 but even under the paramodular
group P02.

Finally consider the representation Π = Π(St⊗ 1) = L((ν1/2St, ν−1/2)). According to Corollary
3.6 there is an essentially unique I–invariant function f ∈ Π(St⊗ 1) ⊂ 1F ∗ o 1GL(2) given by

(f(1), f(s1), f(s1s2), f(s1s2s1)) = (1,−q−1,−q−1, q−2).

A similar computation as before yields Π(η)f = −f , i.e., the Atkin–Lehner eigenvalue of f is
−1. Moreover it shows that the above vector is not only invariant under P2 but even under P02.

The following table gives, for each of the three representations we investigated above, the di-
mensions of the spaces of vectors invariant under the subgroups indicated in the top row. These
are the results of sections 2 and 3. The next-to-last column gives the Atkin–Lehner eigenvalues
we just computed.

representation I P1 P2 P02 AL–eigenvalue ε(1/2,Π)

Π(St⊗ 1) 1 0 1 1 −1 −1

Π(ξ St⊗ 1) 2 1 1 1 1 1

Π(St⊗ St) 1 1 0 0 1 1

(30)
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We have noted above that under some reasonable assumptions on the local Langlands cor-
respondence, the representation Π(St ⊗ 1) is a functorial lift of the representation St ⊗ 1 of
PGL(2, F )×PGL(2, F ), and similarly for the other two representations. Therefore the ε–factor
of Π(π1 ⊗ π2) should be given by ε(s, π1, ψ)ε(s, π2, ψ). Noting that

ε(1/2, St) = −1, ε(1/2, ξ St) = 1, ε(1/2,1) = 1,

we have listed the value of ε(1/2, π1)ε(1/2, π2) in the last column of table (30). Note that these
values do not depend on the choice of ψ. We see that all our Atkin–Lehner eigenvalues coincide
with the signs defined by ε–factors. Hence the situation is similar as for PGL(2), where the sign
defined by the ε–factor always coincides with the Atkin–Lehner eigenvalue on the local newform;
see [Sch1].

5 Classical modular forms

In this final chapter our global ground field is F = Q. We shall use the main lifting result,
Theorem 1.1, to construct certain holomorphic Siegel modular forms of degree 2. The congruence
properties of these modular forms will be controlled by our local results as summarized in (30).
In the classical theory of Siegel modular forms it is customary to realize symplectic groups using
the symplectic form

J =
(

12

−12

)
.

Thus, we change our notation from now on and define, using this J ,

G = GSp(4) =
{
g ∈ GL(4) : tgJg = λ(g)J for some λ(g) ∈ GL(1)

}
,

and similarly for Sp(4). An isomorphism between this GSp(4) and our previous version is given
by switching the first two rows and the first two columns. Siegel modular forms of degree 2 are
holomorphic functions on the Siegel upper half space

H2 =
{
M ∈M(2,C) symmetric, Im(M) positive definite

}
with certain invariance properties. We refer to [Fr] for the precise definition (we shall allow
modular forms for arbitrary arithmetic subgroups of Sp(4,Q)). Note that GSp(4,R)+, the
index–2 subgroup of GSp(4,R) of elements with positive multiplier, acts on H2 by the usual
linear fractional transformations,

Z 7−→ g〈Z〉 := (AZ +B)(CZ +D)−1, g =
(
A B
C D

)
∈ GSp(4,R)+.

We shall also use the classical notation

j(g, Z) = det(CZ +D) for Z ∈ H2 and g =
(
A B
C D

)
∈ GSp(4,R)+.

We shall now describe how to extract a classical modular form from an automorphic repre-
sentation of PGSp(4,A); see also [AS] and [Yo3]. Assume that Π = ⊗Πp is the decomposition
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into local components of a cuspidal automorphic representation of PGSp(4,A). Assume that the
archimedean component Π∞ is σ+

k , the holomorphic discrete series representation of PGSp(4,R)
with scalar minimal K–type (k, k) (see section 4 of [Sch2]). It is these representations that
underlie holomorphic Siegel modular forms of weight k; see [AS]. Note that Π∞ contains a
distinguished lowest weight vector Φ∞ of weight (k, k).

For each finite p let Kp be an open compact subgroup of G(Qp) such that Kp = G(Zp) for almost
all p. Let Φp ∈ Πp be a non-zero vector fixed by Kp. We also require that Φp is for almost all p
the distinguished vector used to define the restricted tensor product ⊗Πp. All the local vectors
can then be pieced together to define an element

Φ := ⊗Φp ∈ Π.

The representation Π is realized as a space of automorphic forms, so we consider Φ a function
on G(A). By definition this function has the property

Φ(ρgh∞hf ) = j(h∞, I)−kΦ(g) for all ρ ∈ G(Q), g ∈ G(A), h∞ ∈ K∞, hf ∈ Kf . (31)

Here Kf =
∏
p<∞Kp, and

K∞ =
{(

A B
−B A

)
∈ GL(4,R) : A tA+B tB = 1, A tB = B tA

}
' U(2)

is the standard maximal compact subgroup of Sp(4,R). Note that h∞ 7→ j(h∞, I), where

I =
(
i
i

)
, is a character of K∞.

5.1 Lemma. Let G = GSp(2n). For each prime number p let Kp be an open compact subgroup
of G(Qp) such that Kp = G(Zp) for almost all p, and such that the multiplier map Kp → Z

∗
p is

surjective for all p. Then

G(A) = G(Q)G(R)+Kf , Kf =
∏
p<∞

Kp,

where G(R)+ is the group of elements of G(R) with positive multiplier.

This lemma is well known and not hard to prove, making use of strong approximation for the
simply connected algebraic group Sp(2n). Together with equation (31) it implies that Φ as above
is determined by its values on G(R)+, provided the local compact subgroups are “big enough”,
as we shall assume from now on. Let us define a function F on H2 by putting

F (Z) = λ(g∞)−kj(g∞, I)kΦ(g∞), where g∞ ∈ G(R)+ is such that g∞〈I〉 = Z. (32)

The stabilizer of I in G(R)+ is K∞ times the center, so F is well-defined by (31) and because
of the factor λ(g∞)−k. The fact that Φ∞ is a lowest weight vector for the discrete series repre-
sentation σ+

k implies that F is a holomorphic function; see [AS] 4.2. If we define the congruence
subgroup

Γ := G(Q) ∩G(R)+
∏
p<∞

Kp ⊂ Sp(4,Q),
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then the function F has the invariance property

F (Z) = (f |γ)(Z) := j(γ, Z)−kF (γ〈Z〉) for all γ ∈ Γ.

In other words, F is a Siegel modular form of weight k with respect to the congruence subgroup
Γ. One can prove that the fact that the representation Π is cuspidal implies that F is a cusp
form in the classical sense, meaning that only positive definite matrices occur in the Fourier
expansion of F and all F |ρ, ρ ∈ Sp(4,Q).

Let f ∈ S2k−2(Γ0(m)) be a classical elliptic holomorphic cusp form of weight 2k−2 and level m.
Assuming that f is an eigenform for all Hecke operators T (p) with p - m, there is a well-known
procedure to attach a cuspidal automorphic representation πf of PGL(2,A) to f , see [Ge] §5 or
[Bu] 3.6. Because of the strong multiplicity one theorem for GL(2), the space of automorphic
forms realizing πf inside L2

0(GL(2,Q)\GL(2,A),1A∗) is unique; here 1A∗ is the trivial character
of A∗ ' Z(GL(2,A)). In the following we shall moreover assume that f is a newform, because
oldforms do not lead to any additional automorphic representations.

Now let us assume that a set S of places of Q exists that satisfies the hypotheses of our lifting
theorem 1.1, where we put π = πf . Let us also assume that ∞ ∈ S. Such an S can always be
found if πf = ⊗πf,p with πf,p being square integrable for some finite p. Given such an admissible
S, let Π = Π(π ⊗ πS) be the global lifting whose existence is guaranteed by Theorem 1.1. By
that theorem, it is a cuspidal automorphic representation of PGSp(4,A). Let Π =

⊗
p≤∞Πp be

the factorization of Π into local components.

Our modular form f has weight 2k − 2, and this determines the archimedean component of πf ,
namely, πf,∞ = D(2k − 3). Since we have assumed ∞ ∈ S, the local archimedean lifting is

Π∞ = Π(πf,∞ ⊗ St) = Π(D(2k − 3)⊗D(1)) = σ+
k

in the notation of [Sch2]. Recall that σ+
k is the holomorphic discrete series representation of

PGSp(4,R) with scalar minimal K–type (k, k). As above let Φ∞ be the distinguished lowest
weight vector.

As for the finite places, we choose vectors Φp ∈ Πp, fixed under compact open subgroups
Kp ⊂ G(Qp), that allow us to define the global element Φ = ⊗Φp ∈ Π. As described above,
Φ corresponds to a classical holomophic cuspform F with respect to the congruence subgroup
Γ = G(Q) ∩G(R)+

∏
p<∞Kp ⊂ Sp(4,Q).

We would like to control the level of these lifts, which of course depends on the local subgroups
Kp. If p - m, then πf,p as well as Πp are unramified representations, and we can choose Kp =
G(Zp) and Φp a spherical vector. These places do not impose any congruence conditions on
γ ∈ Γ (except for being p–integral). To control the level at the bad primes, we shall now assume
that m is square-free. Then we have

πf,p = StGL(2) or πf,p = ξ StGL(2),

where ξ is the non-trivial unramified quadratic character of Q∗. Which of the two representations
occurs is decided by the eigenvalue of f under the Atkin–Lehner involution (defined completely
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in classical terms, as in [Mi] 4.6, for example). If this eigenvalue is −1, then πf,p = St, otherwise
πf,p = ξ St.

In the following theorem we shall be talking about the L–function of a classical Siegel modular
form F (of degree 2). It is not clear whether this is a well-defined notion for eigenforms on
arbitrary congruence subgroups. We therefore agree to associate an L–function to F only if
the following holds: F is related to an adelic function Φ by formula (32); the G(A)–invariant
subspace of L2

0(G(Q)\G(A),1A∗) generated by Φ carries a multiple of a cuspidal automorphic
representation Π of G(A); and we know the local Langlands parameter for each local component
of Π, so that we can define the spin (degree 4) L–function L(s,Π). Under these circumstances,
we define L(s, F ) := L(s,Π). If F is a modular form for the full modular group and an eigenform
for all Hecke operators, this definition of L(s, F ) coincides (up to a shift in the argument) with
the usual spin L–function of F , see [AS]. In our square–free situation the only problematic local
representations will be the three liftings

Π(St⊗ 1), Π(ξSt⊗ 1), Π(St⊗ St)

we investigated before. All three representations are Iwahori–spherical, so we will define their
local parameters to be those given by [KL]. One can show that the local parameter of Π(St⊗1)
is then the direct sum of the local parameters for StGL(2) and 1GL(2), and similarly for the other
representations. The local L–factors of these representations are therefore given by the following
table.

Πp Lp(s,Πp)−1

Π(St⊗ 1) (1− p−s−1/2)2(1− p−s+1/2)

Π(ξSt⊗ 1) (1− p−s−1/2)(1− p−s+1/2)(1 + p−s−1/2)

Π(St⊗ St) (1− p−s−1/2)2

(33)

In the following theorem the paramodular group Γpara(m) is as in (3). The group Γ0(m) is the
usual Hecke subgroup, defined by a congruence condition on the lower left block. We shall use
the same symbol for subgroups of SL(2,Z) and of Sp(4,Z), hoping this causes no confusion.

5.2 Theorem. Let m be a square-free positive integer and f ∈ S2k−2(Γ0(m)) an elliptic eigen-
form, assumed to be a newform. Let εp be the eigenvalue of f of the Atkin–Lehner involution
at p. Let ηp be the Atkin–Lehner involution in degree 2 at p.

i) If the sign in the functional equation of L(s, f) is −1, then there exists a cusp form
F ∈ Sk(Γpara(m)) of degree 2, unique up to multiples, whose completed spin L–function
is given by

L(s, F ) =
1

4π

(
s− 1

2

)
Z
(
s+

1
2

)
Z
(
s− 1

2

)
L(s, f), (34)

where Z is the completed Riemann zeta function. This lifting preserves Atkin–Lehner
eigenvalues, i.e., ηpF = εpF for each p.
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ii) If k is even, then there exists a cusp form F ∈ Sk(Γ0(m)) of degree 2, unique up to
multiples, whose completed spin L–function is given by

L(s, F ) =
1

4π

(
s− 1

2

)( ∏
εp=−1

(
1− p−s+1/2

))
Z
(
s+

1
2

)
Z
(
s− 1

2

)
L(s, f). (35)

We have ηpF = F for each p.

Proof: a) Let π be the cuspidal automorphic representation of PGL(2,A) corresponding to
f . In Theorem 1.1 let S = {∞}. Since ε(1/2, π) is the sign in the functional equation of
L(s, f), the sign condition in Theorem 1.1 is fulfilled by our hypothesis. Hence we obtain a
cuspidal lifting Π = Π(π ⊗ πS). By definition of S, the local components Πp for p|m are either
Π(St ⊗ 1) or Π(ξSt ⊗ 1), each of which contains an essentially unique paramodular-invariant
vector. Together with the lowest weight vector at the archimedean place and the unramified
vectors for finite p - m, we get a cuspidal Siegel modular form F ∈ Sk(Γpara(m)). The assertion
about the Atkin–Lehner eigenvalues can be read off from table (30), and the L–function of F
can easily be determined using table (33) (the factor s− 1

2 comes from the archimedean place,
see (11) in [Sch2]).

As for the uniqueness statement, assume that F ′ is another cusp form with L–function as in
(35). Let Φ′ be the corresponding adelic function, generating (a multiple of) an automorphic
representation Π′. From the form of the Euler factors at good primes, we see that the local
components of Π and of Π′ coincide almost everywhere. Thus Π′ is also “strongly associated to
P” in the terminology of [PS]. By Theorem 2.2 of [PS], considering the way the liftings in our
Theorem 1.1 are constructed, the representation Π′ is also a lift of the form Π(π′⊗πS′) for some
automorphic representation π′ of GL(2,A) and some set of places S′ (see the proof of Theorem
1.1).

The local components Π′p of Π′, being Iwahori–spherical, must therefore be amongst the ones
occuring in table (30). A look at the Euler factors (33) of these representations shows that
Πp = Π′p for p|m. Similarly Π∞ = Π′∞. Therefore the global representations Π and Π′ are
isomorphic. By Theorem 6.2 of [PS], the multiplicity one result for lifts from S̃L(2,A), the
representations Π and Π′ coincide as spaces of automorphic forms. We have shown that Φ and
Φ′ are elements of the same irreducible space of automorphic forms. The uniqueness statement
now follows from the local uniqueness expressed by the one-dimensionality of the spaces of fixed
vectors in (30).

b) The proof is similar as in a). This time we choose S = {∞} ∪ {p|m : εp = −1}. Since
ε(1/2, π) = (−1)k−1

∏
p εp = (−1)k−1(−1)#S−1, the sign condition in Theorem 1.1 is equivalent

to our hypothesis that k is even. Hence we get a cuspidal lifting Π = Π(π ⊗ πS). By definition
of S, the local components Πp for p|m are either Π(ξSt ⊗ 1) or Π(St ⊗ St). In either case, by
(30), we have an essentially unique local fixvector for the Siegel congruence subgroup P1. We
can therefore extract a Siegel cusp form F ∈ Sk(Γ0(m)) from Π. The Atkin–Lehner eigenvalues
and the L–function can be seen from the tables (30) and (33). The uniqueness proof is the same
as in a).

Remarks: a) The factor s− 1
2 in the L–functions, which appears because our sets S contain the

archimedean place, assures that the L–functions are holomorphic at s = 1/2. However, because



5 CLASSICAL MODULAR FORMS 24

of the presence of the zeta functions, the L–functions of all our lifts have simple poles at s = 3/2
and s = −1/2.

b) If m = 1, then i) and ii) are equivalent statements. This is the classical Saito–Kurokawa
case.

c) If m is divisible by many primes, a single modular form f ∈ S2k−2(Γ0(m)) can have many
Saito–Kurokawa lifts, corresponding to various choices of S. All that has to be observed is the
parity condition in Theorem 1.1. However, most of the liftings thus obtained will be cusp forms
with respect to “mixed” congruence subgroups.

d) As mentioned in the introduction, part ii) of the theorem holds for arbitrary positive integers
m, not only square-free ones. This result can be reproved using the above methods, which
requires a more delicate analysis of the local representations. The necessary invariance properties
were obtained in collaboration with Brooks Roberts and will appear elsewhere.

e) If we choose S not to contain the archimedean place, we obtain certain non-holomorphic
Siegel modular forms. See [Mz] for a construction using classical notation.

Examples: a) There exists an elliptic eigenform f ∈ Snew
2 (Γ0(37)) with Atkin–Lehner eigenvalue

ε37 = 1. Since 2 = 2 · 2 − 2, both sign conditions in i) and ii) of Theorem 5.2 are fulfilled, and
we get Siegel modular forms F1 ∈ S2(Γpara(37)) and F2 ∈ S2(Γ0(37)). In this case F1 and F2

correspond to different vectors in the same automorphic representation of PGSp(4,A); the local
representation at the place 37 is Π(ξSt⊗ 1).

b) There exists an elliptic eigenform f ∈ Snew
2 (Γ0(91)) with Atkin–Lehner eigenvalues ε7 =

ε13 = −1. Again both sign conditions are fulfilled, so that we get two Siegel modular forms
F1 ∈ S2(Γpara(91)) and F2 ∈ S2(Γ0(91)). In this case the two modular forms are vectors in
different (but near equivalent) automorphic representations of PGSp(4,A).

Finally, let us compare the construction in part i) of Theorem 5.2 with the Yoshida liftings
of [Yo1], [Yo2] and [BSP1], [BSP2]. The starting point for the latter is also an eigenform
f ∈ S2k−2(Γ0(m)) of some square-free level m. The first step is to move f to an automorphic
form ϕ on the unit group D∗(A) of a global quaternion algebra D via the Jacquet–Langlands
correspondence. Next, the close relationship between D∗(A) and global orthogonal groups is
exploited to produce an automorphic form φ on some GO(V,A), where V is a four-dimensional
quadratic space (this corresponds to the left vertical arrows in the diagram (12) in [Sch2]). This
function is then moved to a Siegel modular form (an automorphic form on GSp(4,A)) via the
theta correspondence. The result is a cusp form of degree 2 of the same level m (meaning for
Γ0(m)).

To make this procedure work, one has to choose a suitable quaternion algebra D. Apparently D
has to be ramified at ∞, and then necessarily also at an odd number of finite places p. But D
must be unramified at finite places outside m, because otherwise f has no Jacquet–Langlands
lift. It follows that necessarily m 6= 1, i.e., classical Saito–Kurokawa lifts are not Yoshida lifts.

Let us assume that m > 1 and that D is chosen such that the Jacquet–Langlands lift ϕ of f
exists. Then another assumption had to be made in [BSP1] and [BSP2] to obtain a non-vanishing
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function φ on the orthogonal group, namely, for all p|m we must have

D unramified at p ⇐⇒ εp = 1. (36)

Thus f completely determines D. For fixed f , there is at most one Yoshida lift. Note that the
condition (36) amounts precisely to the choice of S made in part i) of the theorem above. The
unique Saito–Kurokawa lift F for Γ0(m) constructed in this theorem coincides with the Yoshida
lift of f . The weight condition that k be even is also necessary in [BSP1] and [BSP2], namely
for the final theta lifting to be non-zero.

Thus the point is that our Saito–Kurokawa lifts are locally lifted from orthogonal groups (see
[Sch2]), while this is true globally for Yoshida lifts.
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