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akademischer Mitarbeiter: Dr. Dominik Faas



Abstract

After preliminary work [19], [21] in the 1950s, a paper by Martin Eichler appeared in [50] in
1972 in which the basis problem for modular forms was solved. Eichler describes explicitly
how theta series attached to quaternion ideals can be used to construct a basis for a given
space Sk

(
Γ0(N), 1) of cusp forms of even weight k > 2 and trivial character for the group

Γ0(N).

In the same year an article by Hideo Shimizu ([65]) was published that can be viewed as a
generalization of Eichler’s work to the case of an arbitrary totally real number field F . Like
Eichler, Shimizu is able to find a set of generators—although not necessarily a basis—for
spaces of cusp forms. His result, however, is far less explicit than Eichler’s. A reason is that
in his proof Shimizu makes intensive use of the representation theory of the group GL2(AF )
over the adele ring AF , so that this group and its representations still play a crucial role in
the description of the generating system that he constructs, and a connection to the classical
theta series can hardly be seen.

Therefore, it is the aim of this thesis to prove an explicit version of Shimizu’s Theorem.
This means that we will show how Shimizu’s “adelic theta series” can be transformed into
classical theta series not unlike those in Eichler’s work, which have the advantage of being
explicit enough to be evaluated on a computer.

To this end, we begin by explaining the correspondence between adelic and classical modular
forms, which is well-known in the case F = Q, but only seldom treated in the case of general
number fields. Afterwards we provide the basics of the theory of admissible representations of
GL2(AF ) that are necessary for the understanding of Shimizu’s result. With this background
material we are then able to prove our Main Theorem 5.2.1, which is an explicit version of
Shimizu’s Theorem.

Finally, the results are used to construct theta series on a computer with the help of the
computer algebra system Magma. We are thus able to find explicit sets of generators—in
some cases even bases—for a selection of spaces of cusp forms.





Zusammenfassung

Nach Vorarbeiten [19], [21] aus den 1950er Jahren erschien 1972 in [50] ein Artikel Martin
Eichlers über das Basisproblem für Modulformen, worin er explizit beschreibt, wie man
aus Thetareihen zu gewissen Quaternionenidealen eine Basis eines vorgegebenen Raumes
Sk

(
Γ0(N), 1) von Spitzenformen geraden Gewichts k > 2 und mit trivialem Charakter zur

Gruppe Γ0(N) konstruiert.

Im selben Jahr veröffentlichte Hideo Shimizu einen Artikel ([65]), den man als Verallge-
meinerung von Eichlers Arbeit auf den Fall eines beliebigen total reellen Zahlkörpers F
auffassen kann. Auch ihm gelingt es, ein Erzeugendensystem — wenngleich nicht notwendi-
gerweise eine Basis — für Räume von Spitzenformen anzugeben. Allerdings ist sein Resultat
weit weniger explizit als Eichlers. Dies liegt in erster Linie daran, dass er in seinem Beweis
intensiven Gebrauch von der Darstellungstheorie der Gruppe GL2(AF ) über dem Adelring
AF macht, so dass auch in der Beschreibung des von ihm angegebenen Erzeugendensys-
tems der Gruppe GL2(AF ) und Darstellungen derselben eine tragende Rolle zukommt und
zunächst keinerlei Ähnlichkeit mit klassischen Thetareihen erkennbar scheint.

Ziel der vorliegenden Arbeit ist es nun, eine explizite Version von Shimizus Theorem zu
beweisen. Das heißt, es soll gezeigt werden, wie sich Shimizus ,,adelische Thetareihen“ in
klassische Thetareihen übersetzen lassen, die — wie in Eichlers ursprünglicher Arbeit —
so konkret angegeben werden können, dass dadurch eine Berechnung mit dem Computer
möglich wird.

Zu diesem Zweck wird zunächst der Zusammenhang zwischen adelischen und klassischen
Modulformen hergeleitet, der im Fall F = Q hinlänglich bekannt ist, im Fall allgemeinerer
Zahlkörper in der Literatur aber kaum behandelt wird. Ferner werden diejenigen Aus-
sagen über die Theorie der zulässigen Darstellungen von GL2(AF ) bereitgestellt, die für
das Verständnis von Shimizus Resultat nötig sind. Mit diesen Hilfsmitteln kann dann der
Hauptsatz 5.2.1, d. h. eine explizite Version von Shimizus Theorem, bewiesen werden.

Schließlich wird dieses Resultat benutzt, um mit Hilfe des Computeralgebrasystems Magma

Thetareihen zu konstruieren und somit ganz konkret Erzeugendensysteme — und teilweise
sogar Basen — einiger ausgewählter Räume von Spitzenformen zu berechnen.
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Introduction

Let F be a totally real number field of degree [F : Q] = n > 1 of arbitrary narrow class
number h+, and let k ∈ Zn, k ≥ 2 be a (possibly non-parallel) weight vector.

Hilbert modular forms in the classical sense are holomorphic functions on the n-fold complex
upper half plane with the well-known transformation rule

f |kγ = χ(γ)f

for all γ in some congruence subgroup of GL+
2 (F ) and some character χ. This definition

is completely analogous to the elliptic situation, i. e. to the case of modular forms over Q.
But when delving deeper into the theory and trying to carry methods and proofs over from
Q to the number field F , one will soon face more problems than expected. The theory of
Hecke operators, for example, which is known to be a highly useful tool in the treatment of
modular forms, does not generalize as easily to the number field situation, and it becomes
particularly technical if F is of narrow class number h+ > 1.

On the other hand, one may also define Hilbert modular forms in the adelic setting as certain
automorphic forms on GL2(F )\GL2(AF ) (the precise definition is given in Definition 2.2.9).
Although it looks rather unwieldy, the adelic approach turns out to be more promising for
many purposes and theoretical results. For example, the adelic Hecke theory allows a uniform
treatment of all number fields, so that a non-trivial narrow class group no longer causes
complications. But above all, automorphic forms on GL2(F )\GL2(AF ) give naturally rise
to admissible representations of GL2(AF ), which can then be approached by representation
theoretic means as explained in Hervé Jacquet’s and Robert Langlands’s famous work [41].

A natural question to ask when examining a given space of modular forms for a certain
weight, character and congruence subgroup is: What is the dimension of this space? More-
over, which forms constitute a basis?

In preliminary works [19], [21] and finally in [22],[23], Martin Eichler solved the so-called
“basis problem” for Sk

(
Γ0(N), 1

)
, the space of elliptic cusp forms for the group Γ0(N) of

even weight k and trivial character χ = 1. By proving that Sk

(
Γ0(N), 1

)
is the direct

sum of spaces of newforms and translates thereof, each of which is spanned by theta series
attached to a certain quaternion algebra, he gave an explicit description of a basis of the
space Sk

(
Γ0(N), 1

)
.
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6 Introduction

In the same year, a paper by Hideo Shimizu was published in which the author presents
an alternative proof of Jacquet-Langlands [41, Thm. 14.4] and—as a byproduct—obtains
generators for certain spaces H0

k

(
K0(d, n), 1

)
of adelic Hilbert modular cusp forms of weight

k > 2 and level n. His result can be viewed as a generalization of Eichler’s theorem to the
number field case in the sense that the space H0

k

(
K0(d, n), 1

)
decomposes into a direct sum

of spaces U(m) of newforms and translates thereof, each of which is generated by functions
that we will call, for lack of a better word, adelic theta series.

One drawback of Shimizu’s result is that it does not present a basis for the space of cusp
forms but only a set of generators, while the question of linear dependencies is not ad-
dressed. Moreover, the adelic theta series that Shimizu uses are defined in the language
of admissible representations, so that the similarity to the classical theta series in Eichler’s
work is only visible to the expert. In particular, the definition of the adelic theta series (see
Theorem 5.2.3) is so inexplicit that it is of hardly any use for computational purposes.

At the time that Shimizu’s paper appeared it was far from practicable to calculate any
Fourier coefficients of Hilbert modular forms on a computer. Therefore the motivation for
finding a more explicit version of Shimizu’s result was rather limited. But in the light
of the ever increasing computer capacity and continually growing functionality of modern
computer algebra systems it has become more and more attractive to find explicit examples
of Hilbert modular forms.

Several groups of researchers are nowadays engaged with the construction of Hilbert modular
forms, and consequently, considerable progress in the whole area has been made during the
last few years. In [67], for example, the Fourier coefficients of Hilbert modular forms are
constructed by examining Hecke operators on a certain space of functions on the double
coset space O∗

A\A∗A/A∗F , which parametrizes the O-left ideal classes of an Eichler order O

in a quaternion algbera A. The algorithm follows the ideas in [54]. In [16], [17], [18] it is
further refined by finding an alternative description of the double coset space, so that the
time-consuming computation of the O-left ideal classes can be avoided. The results in these
papers are used for finding evidence for a general modularity conjecture between modular
forms and elliptic curves (see also [14]).

But despite the significant progress that has been made, a satisfactory generalization of
Eichler’s solution of the “basis problem”, i. e. an explicit version of Shimizu’s Theorem in
terms of classical theta series, has neither been formulated nor proven yet. It is the subject
of the present thesis.

The aim of this thesis is threefold. Firstly, we found the literature dealing with the corre-
spondence between classical and adelic modular forms somewhat insatisfactory. While over
Q this correspondence has been explained in detail by several authors (among others [29,
§ 3], [8, Ch. 3], [49, § 1]), not much literature is available for the number field case ([28]). In
particular, number fields of non-trivial narrow class number are rarely treated. One reason
may be that the ideas behind this correspondence that work over Q can easily be adopted to
the number field F , the only difference being that the statements and proofs become more
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cumbersome. To the expert, who is familiar with the elliptic case, it may be clear enough
that most results are more or less the same over F as over Q, and he may be content with
the available literature. The non-expert, however, who is trying to find an introduction to
Hilbert modular forms, may need some more explanation on this topic. We hope to fill a
gap in the treatment of Hilbert modular forms by stating and proving the Correspondence
Theorem 2.3.7 between classical and adelic modular forms in the general case of totally real
number fields with arbitrary class number and for modular forms of arbitrary weight and
character. This will be our aim in Chapters 1 and 2.

A second goal is to examine Shimizu’s result and to make clear to what extend it is a
generalization of Eichler’s work. To this end, we will first explain the representation theoretic
background and ideas behind Shimizu’s work (Chapter 3). Then we have to delve into the
theory of harmonic polynomials, which come into play when constructing theta series of
weight > 2 (Chapter 4). Afterwards we will show how Shimizu’s results can be carried over
from the adelic side to the classical situation, and thus we derive our Main Theorem 5.2.1,
which states that for certain spaces of classical Hilbert modular cusp forms, which we denote
by Sk

(
Γ0(cld, n), 1

)
, a set of generators can be found that consists of quaternionic theta series

of the form
Θ(z) =

∑
ν∈o∗+F /o2

F

ν
k−2

2

∑
a∈I

P (a) exp
(
2πiTr(νnrd(a)z)

)
for suitable, explicitly given quaternion ideals I and harmonic polynomials P . The beginning
of the proof makes use of the Correspondence Theorem, while its main part is motivated by
[80, § 2]. Although the outline of the proof is clear, its realization turns out to be rather
cumbersome and technical, thus making up the biggest portion of Chapter 5.

The third aim of this thesis is to give explicit examples of quaternionic theta series in order
to illustrate the theoretical results of the first chapters. All necessary computations were
carried out with the help of the computer algebra system Magma [13]. Due to technical
reasons, however, we could not use the newest version Magma V2.15. The version we did
use, namely Magma V.2.13, was one of the first versions in which functions for dealing
with quaternion algebras over number fields were included, and as often happens with new
functionality in software packages, not all of it was working flawlessly. For this reason, we
were not able to compute any arbitrary example we wanted because some of them resulted
in unexpected error messages (see Section 6.1 for more details).

Most—though not all—explicit examples of Hilbert modular forms that can be found in
literature are forms of parallel weight k = (2, . . . , 2) over Q(

√
5), or at least over a quadratic

number field of narrow class number h+ = 1. We are therefore glad that in spite of the
problems with the software package we were able to compute examples for each of the
following settings:

• over a number field of narrow class number h+ > 1,

• over a number field of degree n > 2,

• of non-parallel weight k > 2.
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The Magma-group is working hard on improving the functionality for Hilbert modular
forms, that has been included for the first time in the latest version V2.15. The algorithms
they are using are based on [18] and very likely to be far more efficient than ours. But
experience shows how easily mistakes can slip into even the most careful implementation, in
particular when handling so complex a matter. Indeed, the long list of change logs concerning
Hilbert modular forms that can be found on the Magma homepage demonstrates that the
algorithms are not yet perfected and the development is still in progress. It is therefore
always good to have independent results with which to compare the output, and our tables
in Chapter 6 may serve as such. They are independent of the Magma-results in the sense
that by implementing the theta series Θ(z) we use a completely different approach to the
construction of the modular forms.

This thesis would not have been possible without the help and support of a number of
people, to whom I am deeply indebted.

First of all I would like to express my sincere gratitude to my supervisor Prof. Dr. Rainer
Schulze-Pillot for guiding me not only through this thesis but also through the essential part
of my mathematical education. I have always appreciated being a member of his research
group and owe him many thanks for his cordiality and all the valuable advice he gave me
whenever I struggled with a mathematical problem.

I am very grateful to my husband Dr. Max Gebhardt for the encouragement he never failed
to give me and the endless patience he showed throughout those long years. Likewise, I owe
thanks to my family for their moral support and the interest they showed in the progress of
my work.

Last but not least I would like to thank all my colleagues and friends for creating a motivat-
ing and cheerful atmosphere at the department and thus making my time of study highly
enjoyable.



Chapter 1

Hilbert modular forms in the

classical setting

This introductory chapter provides all necessary definitions and elementary facts about
classical Hilbert modular forms over a number field F of degree [F : Q] = n > 1. Although
we do not assume that the reader is familiar with this topic, some knowledge of elliptic
modular forms might prove useful in order to recognize the analogies between the rational
and the number field situation.

We will also introduce theta series attached to quaternion ideals (see Section 1.3). Not only
are they a well-known example of classical Hilbert modular forms and thus worth mentioning,
but we will see in later chapters that they form a set of generators of the whole space of
Hilbert modular cusp forms and are therefore of special interest.

Before we are able to define these theta series we will need a few results concerning quaternion
algebras and their ideal theory. Section 1.2 contains a brief summary hereof.

1.1 Introduction to Hilbert modular forms

Let us start by giving a brief introduction to classical Hilbert modular forms. The reader is
referred to [27, Ch. I § 4], [28, Ch. I § 1.2 and 1.4], [71, Ch. I § 6], and [34, Ch. 2 § 3] for
further details on the subject covered in this section.

Let F be a totally real algebraic number field of degree n = [F : Q] > 1, and let oF be its
ring of integers. Then o∗F is the group of units and we denote by o∗+F the subgroup of totally
positive units. Archimedean places of F will usually be denoted by v, non-archimedean
places by p. We also use the concise notation v | ∞ and p <∞ when referring to archimedean
and non-archimedean places, respectively. The localization of F , oF etc. with respect to p

9



10 Chapter 1. Hilbert modular forms in the classical setting

will be denoted by Fp, op etc.

Denote by GL+
2 (F ) the group of (2×2)-matrices over F whose determinant is totally positive.

A congruence subgroup of GL+
2 (F ) is a subgroup of GL+

2 (F ) containing the kernel of the
canonical reduction map

SL2(oF ) → SL2(oF /n)

for some integral ideal n of F . Let Γ be such a congruence subgroup and χ a character on Γ.
The complex upper half space will be denoted by H. In Hn, we fix the vector i := (i, . . . , i)
with i2 = −1, and denote by k = (k1, . . . , kn) ∈ Zn a vector of integers.

These notations will be fixed throughout this thesis.

Definition 1.1.1 (·|k-operator, factor of automorphy). For z ∈ Hn, a, b, c, d ∈ Rn,

g = (gi)n
i=1 =

((
ai bi
ci di

))n

i=1
∈ GL+

2 (R)n and a function f : Hn → C, we define

• an operation of GL+
2 (R)n on Hn by

gz :=
(
aizi + bi
cizi + di

)n

i=1

∈ Hn ,

• the abbreviations

Tr(az) :=
n∑

i=1

aizi , (cz + d)k :=
n∏

i=1

(cizi + di)ki , det gk :=
n∏

i=1

(det gi)ki ,

• the factor of automorphy by

j(g, z) := (cz + d) det g−1/2 =
n∏

i=1

(cizi + di)(det g−1/2
i ) ,

• and the ·|k-operator by

(f |kg)(z) := j(g, z)−kf(gz) = det gk/2(cz + d)−k f(gz) .

Definition 1.1.2. Let τ1, . . . , τn : F ↪→ R be the n embeddings of F into R, and extend
each τi to an embedding τ̂i : GL+

2 (F ) ↪→ GL+
2 (R) by applying τi to each matrix entry.

• For c ∈ F , we denote by c(1), . . . , c(n) the images of c under the embeddings τ1, . . . , τn.
Similarly, for g ∈ GL+

2 (F ), we write g(1), . . . , g(n) for the images of g under τ̂1, . . . , τ̂n.

• By identifying c ∈ F with the vector (c(1), . . . , c(n)) ∈ Rn and g ∈ GL+
2 (F ) with

(g(1), . . . , g(n)) ∈ GL+
2 (R)n, we may use all of the notation defined in Definition 1.1.1

also for elements in the number field F .



1.1. Introduction to Hilbert modular forms 11

The properties of the factor of automorphy j( · , · ) and the ·|k-operator which we will most
frequently use are stated in the following lemma.

Lemma 1.1.3. For all g, h ∈ GL2(F ), z ∈ Hn and f : Hn → C,

j(gh, z) = j(g, hz)j(h, z) and f |k(gh) =
(
f |kg

)
|kh .

Proof. As in the case F = Q, these identities can be verified by a straightforward calculation.

Definition 1.1.4 (Hilbert modular form). A Hilbert modular form of weight k for
the group Γ with character χ is a holomorphic function f : Hn → C that satisfies the
transformation rule

f |kγ = χ(γ)f for all γ ∈ Γ .

The space of all Hilbert modular forms of weight k for the group Γ with character χ will be
denoted by Mk(Γ, χ). If χ = 1 we will sometimes write Mk(Γ) instead of Mk(Γ, 1).

Proposition 1.1.5 (Fourier expansion). Let f ∈Mk(Γ). The set

a =

{
a ∈ F

∣∣∣ ( 1 a

0 1

)
∈ Γ

}

is an ideal in F , and we denote by a# its dual. Then f(z) has a Fourier expansion of the
form

f(z) =
∑

ξ∈a#

aξe
2πiTr(ξz) where aξ = 0 unless all ξ(i) ≥ 0 .

The Fourier coefficients aξ are given by the formula

aξ =
1

vol(Rn/a)

∫
Rn/a

f(z)e−2πiTr(ξz) dx

where z = (xv + iyv)n
v=1 and dx = dx1 · · · dxn.

Proof. See [27, Ch. I, Lemma 4.1] or [28, section 1.2].

Remark 1.1.6. (i) Clearly, either all or none of the conjugates ξ(i) of ξ are equal to zero.
So the Fourier expansion of f has a constant term a0, which may be zero, and all other
coefficients aξ belong to totally positive elements ξ ∈ a#.

(ii) Note that our general assumption [F : Q] > 1 is crucial for the validity of Proposi-
tion 1.1.5. In the case F = Q, we would need the additional requirement that f be
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“regular at the cusps”. This means, by definition, that there are no Fourier coefficients
aξ for ξ < 0. If [F : Q] > 1, however, the so-called Koecher principle guarantees that
this regularity requirement is automatically satisfied, see for example [34, Theorem 3.3]
or Koecher’s original work [48].

Definition 1.1.7 (Cusp form). A Hilbert modular form is called cusp form if for all
γ ∈ GL+

2 (F ) the constant term in the Fourier expansion of f |kγ vanishes. The space of all
cusp forms in Mk(Γ, χ) will be denoted by Sk(Γ, χ).

Proposition 1.1.8.

(i) Hilbert modular forms of weight 0 with trivial character are constant, i. e.

M0(Γ) = C and S0(Γ) = {0} .

(ii) Hilbert modular forms with trivial character that are no cusp forms exist only for
parallel weight, i. e. for k1 = . . . = kn. In other words,

k not parallel =⇒ Mk(Γ) = Sk(Γ) .

(iii) A necessary condition for the existence of a modular form f 6= 0 in the space Mk(Γ, χ)
is

χ

((
a 0
0 a

))
= sgn(a)k for all

(
a 0
0 a

)
∈ Γ ,

where sgn(a) = (sgn(a(1)), . . . , sgn(a(n))).

Proof. Part (i) and (ii) can be found in [27, I § 4]. The third assertion can be shown as in
the case of elliptic modular forms: Let 0 6= f ∈ Mk(Γ, χ) and let γ ∈ Γ be a scalar matrix
with diagonal (a, a), then

χ(γ)f = f |kγ = (a2)k/2a−kf = sgn(a)kf .

1.2 Quaternion algebras and their ideals

Our aim in this section and the next is to present generalized theta series over number fields.
The construction mainly follows [24] and makes use of quaternion algebras. For this reason,
we begin with a short summary of the basic definitions and statements concerning ideals
and orders in quaternion algebras. For more details, the reader is referred to [73].
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Let A be a definite quaternion algebra over the totally real number field F with basis vectors
1, i, j, k satisfying

i2 = α, j2 = β, ij = −ji = k for some fixed α, β ∈ F ∗ .

Being definite means that A is ramified at all archimedean places of F . The non-archimedean
places at which A is ramified are collected in the discriminant D1 of A defined by

D1 :=
∏

p<∞
A is ramified at p

p .

Definition 1.2.1 (Quaternion ideals and orders).

(i) An ideal of A is a complete lattice in A, i. e. a finitely generated oF -module I in A,
such that there exists a basis x1, . . . , x4 of A with

I ⊆ oFx1 + . . .+ oFx4 and FI = A .

(ii) An order of A is an ideal of A that is moreover a unitary ring. Equivalent is the
definition: An order of A is a unitary ring O consisting of integral elements in A such
that FO = A. An order is called maximal if it is not properly contained in any larger
order of A. An order is called an Eichler order if it is the intersection of two (not
necessarily distinct) maximal orders.

(iii) For an ideal I, we call

ol(I) := {a ∈ A | aI ⊆ I} and or(I) := {a ∈ A | Ia ⊆ I}

the left order and right order of I, respectively, and say that I is an ol(I)-left ideal
and an or(I)-right ideal. Both ol(I) and or(I) are orders in A. We say that an ideal
is integral if it is contained in its left (or equivalently in its right) order.

(iv) If O is an order then two O-left (resp. right) ideals I, J are said to be in the same
ideal class if there exists an a ∈ A∗ such that I = Ja (resp. I = aJ).

Lemma and Definition 1.2.2. If O is an Eichler order in A then its localizations are of
the form 

Op = {a ∈ Ap | nrd(a) ∈ op} if p | D1 ,

Op = a

(
op op

pkp op

)
a−1 for some a ∈ A∗p else .

The exponents kp are non-negative integers almost all of which are 0. We put

D2 :=
∏
p-D1

pkp ,

and call the ideal D1D2, or the pair (D1, D2), the level of O. The order O is maximal if
and only if D2 = 1.
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On the quaternion algebra A, consider the bilinear form β(·, ·) and the corresponding
quadratic form q(·) given by

β(x, y) := tr(xy) and q(x) := β(x, x) = 2 nrd(x) for all x, y ∈ A ,

where tr(x) = x + x and nrd(x) = xx denote the (reduced) trace and norm, respectively.
The discriminant of a quaternion ideal I with respect to β(·, ·) is the ideal disc(I) ⊆ F

generated by {
det
(
β(xi, xj)

)4
i,j=1

| x1, . . . , x4 ∈ I
}
.

The dual of I with respect to β(·, ·) is defined by

I# :=
{
x ∈ A | β(x, I) ⊆ oF

}
.

Definition 1.2.3 (Norm, level). Let I be an ideal in A. Then the ideal in F that is
generated by all nrd(x) with x ∈ I is called the (reduced) norm of I and will be denoted by
nrd(I). The level of I is

N(I) := nrd(I)−1nrd(I#)−1 .

Remark 1.2.4. Note that our definition of the level of I is equivalent to Eichler’s definition
in [24, § 2, Lemma 2] although we use a slightly different notion of the dual of I.

Lemma 1.2.5. Let O be an Eichler order of level (D1, D2), and let I be an O-left ideal.

(i) The number H of O-left (resp. right) ideal classes is finite and depends only on the
level (D1, D2).

(ii) The discriminant of O is disc(O) = D2
1D

2
2.

(iii) The localization Ip is a principal Op-left ideal for every non-archimedean place p.

(iv) The dual of I has the discriminant disc(I#) = disc(I)−1.

(v) The discriminant of I is disc(I) = nrd(I)4 ·disc(O). In particular, disc(I) is the square
of an ideal of F .

(vi) The level of I is N(I) = D1D2.

Proof. (i) See [73, I, § 4, Lemme 4.9].

(ii) For maximal orders, i. e. if D2 = 1, see [56, Corollary (25.10)] or carry the proof given
in [54, Prop. 1.1] over to the number field case. For an Eichler order O contained in a
maximal order M, use the fact that disc(O) = [M : O]2disc(M) and [Mp : Op] = (D2)p

locally.
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(iii) This is an exercise in [53, § 3], the proof is carried out in [68, Prop. 2.5.2].

(iv) See [52, § 82F].

(v) By (iii), Ip = Opap for some ap ∈ A∗p. We can find some ideals ai,p in Fp and suitable
ui ∈ A∗p such that Op = a1,pu1 + . . .+ a4,pu4 (see [52, Thm. 81:3]). Then the ideal Ip
is Ip = a1,pu1ap + . . .+ a4,pu4ap. Because of

β(uiap, ujap) = tr(uiapujap) = tr(uiapapuj) = nrd(ap)tr(uiuj) = nrd(ap)β(ui, uj) ,

the discriminant is disc(Ip) = nrd(ap)4 · disc(Op) = nrd(Ip)4 · disc(Op).

(vi) From what we have seen in the first parts of this lemma it follows that

N(I)4 = nrd(I)−4nrd(I#)−4 = disc(I)−1disc(I#)−1disc(O)2 = D4
1D

4
2 .

Remark 1.2.6. Any Eichler order O may also be viewed as the O-ideal O·1. By Defini-
tion 1.2.2 and Definition 1.2.3, we have two ways of defining the level of O. Fortunately, there
will be no confusion since the previous lemma assures that the two definitions coincide.

Lemma 1.2.7. Let O be an Eichler order of A. Then

nrd(A∗) = F+ , nrd(O∗
p) = o∗p , nrd(O∗

A) =
∏
v|∞

R>0 ×
∏

p<∞
o∗p .

Proof. Use [52, 42:11, 63:19 and Thm. 66:3] for the first assertion and use Lemma 1.2.2 for
the second and third.

We fix an Eichler order O of level (D1, D2), and for the O-right ideal classes in A, we fix a
complete set of representatives

{I1, . . . , IH} with left orders ol(Ij) =: Oj .

Then the left orders Oj are again Eichler orders of level (D1, D2), but note that they are
not necessarily distinct.

Locally, every Ij is a principal ideal generated by some yj,p as we have seen in Lemma 1.2.5.
The local-global-correspondence (see [73, III, § 5A, Prop. 5.1]) assures that we can choose
yj,v = 1 for all v | ∞ and yj,p = 1 for almost every p < ∞. By collecting the local data we
can therefore identify Ij with yjO

∗
A where yj = (yj,p)p ∈ A∗A. From this, we get a disjoint

decomposition

A∗A =
H∐

j=1

A∗yjO
∗
A , (1.1)

of which we will make extensive use in our calculations in Chapters 4 and 5.



16 Chapter 1. Hilbert modular forms in the classical setting

1.3 An example: Theta series attached to quaternion

ideals

Over Q, theta series attached to a 2m-dimensional quadratic space with a positive definite
quadratic form q(x) = xtU tUx, and to a homogeneous harmonic polynomial P are functions
of the form

θ(z) =
∑

x∈Z2m

P (Ux) exp(πiq(x)z) for z ∈ H .

They are known to be fundamental examples of elliptic modular forms of weight deg(P )+m
for some character and some group that depend on the level and the discriminant of the
quadratic form (see [60] or [51, Ch. VI, Thm. 20]).

The definition of theta series can be adapted to the case of a totally real number field F

and will lead to a method for constructing Hilbert modular forms. The complications that
arise are mostly due to the fact that we need to deal with all embeddings F ↪→ R at the
same time, but these difficulties are mainly of technical nature. For further details see [24,
Chapter I].

As in the previous section let A be a definite quaternion algebra equipped with the quadratic
form q(x) = 2nrd(x). With respect to the basis {e1, . . . , e4} := {1, i, j, k}, the quadratic form
q(x) has the matrix

B :=


2 0 0 0
0 −2α 0 0
0 0 −2β 0
0 0 0 2αβ

 ∈M4(F ) where i2 = α, j2 = β as before.

Fix a Q-basis η1, . . . , ηn for F . Then

B := {b1, . . . , b4n} := {η1e1, . . . , η1e4, . . . , ηne1, . . . , ηne4}

is a Q-basis of A, and we will always assume that the basis vectors are ordered in this
fashion. For x ∈ A, we will momentarily write xB ∈ Q4n for the coordinate vector of x with
respect to B.

Let I be a quaternion ideal. As oF is only a Dedekind domain but not necessarily a principal
ideal ring, the ideal I might not possess an oF -basis, but we can always find a Z-basis
C = {c1, . . . , c4n} for I. Let T be the transformation matrix between the bases C and B, i. e.

T = (tij) ∈ GL4n(Q) such that cj =
4n∑
i=1

tijbi .

Clearly, xB = TxC .

As mentioned at the beginning of this section, the main ingredients of theta series defined
over Q are terms of the form exp(πiq(x)z) = exp

(
πi(xtU tUx)z

)
for z ∈ H and x running
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through a suitable lattice, together with a factor P (Ux) where P is a homogeneous harmonic
polynomial. In the generalization to number fields, the expression q(x)z has to be replaced
by

Tr
(
q(x)z

)
:=

n∑
i=1

(
q(x)

)(i)
zi for z ∈ Hn and x ∈ I ,

the superscript (i) indicating the i-th embedding into the real numbers, as usual. We also
want to adapt the polynomial expression P (Ux) to the number field case. To this end, we
want to find a matrix, which we call U(z), such that Tr

(
q(x)z

)
= xt

CU(z)tU(z)xC .

In order to deal conveniently with all embeddings F ↪→ R at the same time, we put

G :=


η
(1)
1 I4 . . . η

(1)
n I4

...
...

η
(n)
1 I4 . . . η

(n)
n I4

 ∈M4n(R) , I4 the (4× 4)-identity matrix ,

and

M :=


z1B

(1) 0
. . .

0 znB
(n)

 ∈M4n(C) .

Then, for x = x1e1 + . . .+ x4e4 ∈ A with xi ∈ F ,

(x(1), . . . ,x(n)) = xt
BG

t = xt
CT

tGt where x(i) = (x(i)
1 , . . . , x

(i)
4 ) .

On the other hand (
q(x)

)(i) = x(i)B(i)(x(i))t ,

so that

Tr
(
q(x)z

)
=

n∑
i=1

(
q(x)

)(i)
zi =

n∑
i=1

x(i)ziB
(i)x(i)t = (x(1), . . . ,x(n))M


x(1)t

...
x(n)t


= xt

C
(
T tGtMGT

)
xC .

Since A is positive definite, the elements α and β must be totally negative elements, so we
may define

S(i) :=


√

2 0 0 0
0

√
−2α(i) 0 0

0 0
√
−2β(i) 0

0 0 0
√

2α(i)β(i)

 ∈M4(R) for all i = 1, . . . , n .

Then the matrix

U(z) :=


√
−iz1 S(1) 0

. . .
0

√
−izn S

(n)

GT ∈M4n(C)
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satisfies
Tr
(
q(x)z

)
= i · xt

C
(
U(z)tU(z)

)
xC .

Now we can adapt the harmonic polynomial P (Ux) in the following way to the number field
case: For i = 1, . . . , n, let Pi be homogeneous polynomials of degree li ∈ N0 in 4 variables.
Assume further that they are harmonic, i. e. ∆Pi = 0, where ∆ is the Laplace operator. In
section 4.1, we will discuss harmonic polynomials in greater detail. For the time being, it is
sufficient to note that

P
(
X

(1)
1 , . . . , X

(1)
4 , . . . , X

(n)
1 , . . . , X

(n)
4

)
:=

n∏
i=1

Pi

(
X

(i)
1 , . . . , X

(i)
4

)
is again a homogeneous harmonic polynomial of degree degP = l1 + . . .+ ln. So, the natural
generalization of the polynomial expression that we are looking for is

Q(x) := (−iz)−l/2P (U(z)xC) where l = (l1, . . . , ln) .

On closer inspection, we see that Q does not depend on z. We may therefore take z = i, put

S :=


S(1) 0

. . .
0 S(n)

 ∈M4n(R)

and recall that by construction U(i)xC = SGTxC = SGxB = S(x(1), . . . ,x(n))t. Thus, we
obtain a simpler expression for Q, namely

Q(x) = P
(
S(x(1), . . . ,x(n))t

)
(1.2)

where, as before, x(i) = (x(i)
1 , . . . , x

(i)
4 ) for x = x11 + x2i + x3j + x4k ∈ A.

After these lenghty preparations, we are now ready to state the fundamental theorem. Let

Γ0(c, n) =

{(
a b

c d

)
∈

(
oF c−1

nc oF

) ∣∣∣ ad− bc ∈ o∗+F

}

and denote by Γ1
0(c, n) the normal subgroup of Γ0(c, n) consisting of all elements of determi-

nant 1.

Theorem 1.3.1. Let I be an ideal in A whose left and right order are Eichler orders of
level (D1, D2). For i = 1, . . . , n, let Pi be a homogeneous harmonic polynomial of degree li
in 4 variables and put k := (l1 + 2, . . . , ln + 2). Let Q be defined as in (1.2), and denote by
d the different of F . Then the theta series

ϑI(z;Q) :=
∑
x∈I

Q(x) exp
(
2πiTr(nrd(x)z)

)
is a Hilbert modular form for the group Γ1

0

(
nrd(I)d, D1D2

)
of weight k with character 1.
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Proof. In [24, § 4, Thm. 1], the series ϑI is proven to be a Hilbert modular form of weight
k for the group Γ1

0(nrd(I)d, N(I)), which, by Lemma 1.2.5, is equal to Γ1
0(nrd(I)d, D1D2).

The triviality of the character is due to the fact that the quadratic space (A, 2nrd) has
square discriminant.

Remark 1.3.2. In Proposition 1.1.8 we saw that a modular form inMk(Γ, χ) is trivial unless
its character satisfies χ

((
ε 0
0 ε

))
= sgn(ε)k for all

(
ε 0
0 ε

)
∈ Γ. In the situation of the previous

theorem, this condition reads χ(±I2) = (±1)k = (±1)k1+...+kn (where I2 denotes the (2×2)-
identity matrix) because ±I2 are the only diagonal matrices in Γ = Γ1

0(nrd(I)d, D1D2). In
the theorem, however, we construct a modular form of character 1. Consequently, (−1)k = 1
or ϑI(z;Q) = 0. That this is indeed true, can also be seen by direct calculation: Assume
(−1)k 6= 1, which implies that deg(Q) =

∑
deg(Pi) is odd. Then

ϑI(z;Q) = ϑ(−I)(z;Q) =
∑
x∈I

Q(−x) exp
(
2πiTr(nrd(−x)z)

)
= (−1)deg(Q)

∑
x∈I

Q(x) exp
(
2πiTr(nrd(x)z)

)
= −ϑI(z;Q) .

Hence, ϑI( · ;Q) vanishes. The bottom line is that ϑI( · ;Q) = 0 unless the degree of the
homogeneous harmonic polynomial Q is even.

We conclude this chapter with a slight generalization of Theorem 1.3.1 that allows us to
construct Hilbert modular forms for the full group Γ0

(
nrd(I)d, D1D2

)
, so that we are not

forced to restrict our attention to matrices of determinant 1.

Corollary 1.3.3. Suppose that

sgn(ε)k =
n∏

i=1

sgn(ε(i))ki = 1 for all ε ∈ o∗F .

In the situation of the last theorem, define another theta series by

ΘI(z;Q) :=
∑

δ∈o∗+F /o∗2F

δ
k−2

2 ϑI(δz;Q) =
∑

δ∈o∗+F /o∗2F

δ
k−2

2

∑
x∈I

Q(x) exp
(
2πiTr(δnrd(x)z)

)
,

where δ runs through a set of representatives of totally positive units modulo squares. Then
this theta series ΘI(z;Q) is a Hilbert modular form for the group Γ0(nrd(I)d, D1D2) of
weight k with character 1.

Remark 1.3.4. The factor group o∗+F /o∗2F of totally positive units in F modulo squares is
in fact a finite group. Since F is totally real, its order is

[o∗+F : o∗2F ] =
[o∗F : o∗2F ]
[o∗F : o∗+F ]

=
2n

2nh/h+
=
h+

h

(cf. [42, VI, § 3, Thm. 3.1]). Here h and h+ are the class number and narrow class number
of F , respectively.
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Proof of Corollary 1.3.3. First note that the assumption sgn(ε)k = 1 makes sure that the
series ΘI( · ;Q) does not depend on the choice of the elements δ modulo o∗2F . Indeed, for
ε ∈ o∗F we have

(δε2)
k−2

2 ϑI(δε2z;Q) = δ
k−2

2 εk−2sgn(ε)k−2
∑
x∈I

Q(x) exp
(
2πiTr(δε2nrd(x)z)

)
= δ

k−2
2

∑
x∈I

Q(εx) exp
(
2πiTr(δnrd(εx)z)

)
= δ

k−2
2 ϑI(δz;Q)

since εI = I. Now let γ ∈ Γ0

(
nrd(I)d, D1D2

)
be an arbitrary matrix, not necessarily of

determinant 1. So

γ = γ̃

(
ε 0
0 1

)
where ε := det γ ∈ o∗+F and γ̃ ∈ Γ1

0

(
nrd(I)d, D1D2

)
.

Then

(
ΘI |kγ

)
(z;Q) =

∑
δ∈o∗+F /o∗2F

δ
k−2

2
(
ϑI |kγ

)
(δz;Q) =

∑
δ∈o∗+F /o∗2F

δ
k−2

2

(
ϑI |k

(
ε 0
0 1

))
(δz;Q)

because γ̃ acts trivially on ϑI( · ;Q) by Theorem 1.3.1. Now observe that

ε
k
2 =

n∏
i=1

(ε(i))
ki
2 =

n∏
i=1

ε(i)
n∏

i=1

(ε(i))
ki−2

2 = NF
Q (ε) ε

k−2
2 = ε

k−2
2

because ε ∈ o∗+F is necessarily of norm 1. Hence(
ΘI |kγ

)
(z;Q) =

∑
δ∈o∗+F /o∗2F

δ
k−2

2 ε
k
2 ϑI(εδz;Q) =

∑
δ∈o∗+F /o∗2F

(εδ)
k−2

2 ϑI(εδz;Q) = ΘI(z;Q)

since εδ runs through all of o∗+F /o∗2F if δ does.
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Adelic Hilbert modular forms

Now that we have learned the basic properties and seen the fundamental examples of classical
Hilbert modular forms, we turn to the task of introducing Hilbert modular forms in the
adelic setting (Section 2.2). The correspondence between the classical and the adelic setting
is well known, but somewhat cumbersome if F has narrow class number h+ > 1. It will be
explained in Section 2.3.

Since the adelic approach makes extensive use of representation theoretic methods, the first
section gives a brief introduction to the representation theory that will be needed later on.

2.1 Group representations

We start by recalling some facts about topological groups, which can be found, for example,
in [55, Ch. 1].

Let G be a topological group. We say that G is locally compact if it is Hausdorff and if every
g ∈ G has a compact neighbourhood. It is well known that every locally compact group
admits an invariant measure, the so-called Haar measure, which is unique up to a constant
factor. The topological group G is called totally disconnected if the identity element, and
hence every element in G, is its own connected component.

Example 2.1.1. A p-adic field Fp equipped with the usual topology is locally compact and
totally disconnected. The same holds for GL2(Fp). Let op denote the ring of integers in
Fp. Then GL2(op) is a maximal compact subgroup of GL2(Fp), and all maximal compact
subgroups of GL2(Fp) are its conjugates, i. e. of the form g−1GL2(op)g for some g ∈ GL2(Fp)
(see [63, II, Ch. IV, § 2, section 1]). All of these subgroups are not only compact but also

21
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open. The groups

Γ1(ps) :=

{
A ∈ GL2(op)

∣∣∣ A ≡

(
1 0
0 1

)
mod ps

}
for s ∈ N0

are compact open normal subgroups of GL2(op), they form a basis of the neighbourhoods
of the identity (cf. [55, Lemma 1-17]).

Let G be a locally compact group. By a representation of G we will always mean a topological
representation, i. e. a homomorphism π : G → GL(E) of G into the automorphism group
of some Hilbert space E such that

G× E → E , (g, x) 7→ π(g)x

is continuous with respect to the product topology on G × E. The representation π is
irreducible if E has no closed π-invariant subspaces other than {0} and E. It is unitary if
π(g) is unitary for all g ∈ G. Two representations π : g → E and π̃ : G→ Ẽ are equivalent
if there exists a continuous isomorphism σ : E → Ẽ with continuous inverse such that
σ ◦ π(g) = π̃(g) ◦ σ for all g ∈ G.

Example 2.1.2. If G is a topological group and E some Hilbert space of continuous func-
tions G→ C then it is well known that the right regular representation ρ and the left regular
representation λ, defined by(

ρ(g)f
)
(h) = f(hg) and

(
λ(g)f

)
(h) = f(g−1h) ,

are representations.

Definition 2.1.3 (Matrix coefficient, character). Let E be a Hilbert space with Her-
mitian inner product 〈 · , · 〉 and let π : G→ GL(E) be a representation.

(i) A matrix coefficient of π is any function of the form

G→ C , g 7→ 〈π(g)x, y〉 for some x, y ∈ E

or equivalently of the form

G→ C , g 7→ L
(
π(g)x

)
for some x ∈ E and some continuous linear functional L : E → C.

(ii) If dimE <∞ then the character of π is defined by

χπ : G→ C , χπ(g) := Tr
(
π(g)

)
.

(iii) If G is compact we denote by Ĝ the set of equivalence classes of irreducible unitary
representations of G.
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Example 2.1.4. Up to equivalence, all irreducible representations of R∗ and R>0 are one-
dimensional, i. e. quasi-characters, and of the form

R∗ → GL(C) ∼= C∗ , x 7→ |x|rsgn(x)

and R>0 → GL(C) ∼= C∗ , x 7→ xr

for some r ∈ C. Likewise, the quasi-characters of a p-adic field F ∗
p are of the form

F ∗
p → GL(C) ∼= C∗ , x 7→ |x|rp µ(x)

where r ∈ C is a complex number and µ is the pullback of a unitary character o∗p → S1 (cf.
[55, § 7.1] or [78, I.VII § 3]).

Theorem 2.1.5 (Schur orthogonality). If π : G → GL(E) is an irreducible representa-
tion of a compact group G on a finite-dimensional Hilbert space E with a π-invariant inner
product 〈 · , · 〉 then∫

G

〈π(g)v1, v2〉〈π(g)w1, w2〉 dg =
1

dimE
〈v1, w1〉〈v2, w2〉 .

Proof. See for example [9, Thm. 2.4].

In later sections we will deal with representations on infinite dimensional Hilbert spaces.
As usual it will be one of the main tasks to study their decomposition into irreducible
subrepresentations. In this context it is crucial to distinguish between algebraic direct sums
and Hilbert space direct sums, so let us recall that for a (possibly infinite) sequence of
Hilbert spaces E1, E2, . . . the algebraic direct sum is defined as⊕

i

Ei := {(ei)i | ei ∈ Ei, and ei = 0 for almost all i}

whereas the Hilbert space direct sum is defined as⊕̂
i

Ei := {(ei)i | ei ∈ Ei and
∑

i

‖ei‖ <∞} .

Proposition 2.1.6. Let E be a Hilbert space with Hermitian inner product 〈 · , · 〉, and let
π : K → GL(E) be a representation of a compact group K on E. Then there exists a
Hermitian inner product 〈〈 · , · 〉〉 on E that induces the same topology as 〈 · , · 〉 and such that
π is unitary with respect to 〈〈 · , · 〉〉.

Proof. Cf. [8, Lemma 2.4.3].
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Theorem 2.1.7 (Peter-Weyl). Let π : K → GL(E) be a representation of a compact
group K on a Hilbert space E.

(i) If π is unitary then E decomposes into a Hilbert space direct sum of irreducible unitary
representations.

(ii) If π is unitary and irreducible then it is finite-dimensional.

Proof. Cf. [9, Thm. 4.3].

Corollary 2.1.8. Let G be a group with a maximal compact subgroup K, let π : G→ GL(E)
be a representation of G on a Hilbert space E. Then there exists a decomposition

E =
⊕̂

σ

Eσ where all σ : K → GL(Eσ) are irreducible and finite-dimensional. (2.1)

In particular, the Hilbert space direct sum is an algebraic direct sum if π is finite-dimensional.

Proof. In virtue of Proposition 2.1.6 we may assume that the representation π|K is unitary.
The existence of a decomposition of E into irreducible K-invariant subspaces then follows
by the Peter-Weyl theorem 2.1.7 as does the finiteness of each σ.

Example 2.1.9. Consider the group SO2(R)n for n ∈ N. We denote its elements by

r(θ) := r
(
(θ1, . . . , θn)

)
:=

( cos θj − sin θj

sin θj cos θj

)n

j=1

 where 0 ≤ θj < 2π .

Note that SO2(R)n is a maximal compact subgroup of GL+
2 (R)n and that it is abelian.

Now let π : SO2(R)n → GL(E) be an irreducible finite-dimensional representation. Then
dim(E) = 1 by Schur’s Lemma (see for example [43, Cor. 1.9]). More precisely, π is of the
form

π(r(θ)) = eiTr(mθ) = ei(m1θ1+...+mnθn) for some m = (m1, . . . ,mn) ∈ Zn ,

which is shown, for example, in [74, II § 1] for n = 1. The general case follows immediately
by examining the restriction of π to the j-th component of SO2(R)n.

The Peter-Weyl Theorem and its Corollary then state that all finite-dimensional represen-
tations of GL+

2 (R)n → GL(E) can be decomposed into an algebraic direct sum of represen-
tations SO2(R)n → C∗ of the type π

(
r(θ)

)
= eiTr(mθ).
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Definition 2.1.10 ((Locally) K-finite). Let G be a group with a maximal compact
subgroup K, and let π : G→ GL(E) be a representation of G on a Hilbert space E.

(i) A vector f ∈ E is called K-finite if

dim
〈
π(k)f | k ∈ K

〉
<∞ .

(ii) We say that the representation π is locally K-finite if every f ∈ E is K-finite.

Remark 2.1.11. Let us write f ∈ E according to (2.1) as f =
∑

σ fσ with fσ ∈ Eσ. If
all but finitely many fσ’s were equal to 0 then f would automatically be K-finite as all of
its components lie in finite-dimensional K-invariant subspaces. But note that this argument
does not hold in general since the decomposition in (2.1) is a Hilbert space direct sum and
f may have infintely many non-zero components.

Lemma 2.1.12.

(i) In the situation of Definition 2.1.10, the representation π is locally K-finite if and only
if E is an algebraic direct sum of finite-dimensional irreducible K-invariant subspaces.
In this case,

E =
⊕
σ∈ bK

E(σ)

where E(σ) is the sum of all those subspaces of E that are equivalent to σ. The space
E(σ) is called the σ-isotypic component of E.

(ii) If, in particular, G = GL2(Fp) and K = GL2(op), then π is locally K-finite if and
only if for every x ∈ E, the stabilizer

StabG(x) := {g ∈ G | π(g)x = x}

is an open subgroup of G.

Proof. For part (i), see Remark 2.1.11 and [44, Prop. 1.18]. For (ii), let G = GL2(Fp),
K = GL2(op), and x ∈ E. If StabG(x) is open in G then StabK(x) = K ∩ StabG(x) is open
in the compact group K, so that K/StabK(x) ∼= {π(k)x | k ∈ K} is finite (see for example
[55, Prop. 1-4]) and therefore spans a finite-dimensional vector space.

Conversely, let π be locally K-finite and fix an x ∈ E. The space E′ :=
〈
π(k)x | k ∈ K

〉
is of dimension r, say, so that π|K : K → GL(E′) ∼= GLr(C). In GLr(C), we can choose
an open neighbourhood U of the identity which is so small that it does not contain any
non-trivial subgroup of GLr(C). The inverse image (π|K)−1(U) is, by continuity, an open
neighbourhood of 1 in K. By Example 2.1.1, there is an open subgroup H of K with
H ⊆ (π|K)−1(U). Note that since K is open in G, so is H. The image π(H) is a subgroup
of GLr(C) contained in U and hence trivial. It follows that H ⊆ StabG(x), so StabG(x) is
open (cf. [38, II, Prop. 6]).
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Definition 2.1.13 (Admissible representation). As before, let G be a group with a
maximal compact subgroup K, and let π : G → GL(E) be a representation of G on a
Hilbert space E. We call the representation π admissible if it is locally K-finite and in
any decomposition of the space E of the form (2.1) every isomorphism class of irreducible
finite-dimensional representations of K appears only finitely many times.

Remark 2.1.14.

(i) It can be shown that the notion of admissibility does not depend on the choice of the
decomposition (cf. [43, VIII § 2]).

(ii) For each isomorphism class σ of irreducible unitary representations of K, denote by
E(σ) the σ-isotypic part of E. The admissibility of π is then equivalent to all E(σ)
being finite-dimensional.

Proposition 2.1.15. Let G = GL2(R) or G = GL2(R)+. If π : G→ GL(E) is a represen-
tation on a Hilbert space E then

π : g → GL(E∞) , π(X)f =
d

dt
π
(
exp(tX)

)
f |t=0

is a representation of the Lie algebra g of G on the space

E∞ := {e ∈ E | G→ E, g 7→ π(g)e is a C∞-map on G}

of smooth vectors in E. It extends to a representation on E∞ of the universal enveloping
algebra U(gC) of the complexification gC of g.

Proof. See [43, Prop. 3.9].

2.2 Hilbert modular forms in the adelic setting

The definitions and basic properties that were given in Section 1.1 are clearly the obvious
generalizations of elliptic modular forms (over Q) to Hilbert modular forms (over the number
field F ). However, the classical theory does no longer generalize as easily when leaving the
basics behind. As mentioned in the introduction, it turns out to be extremely useful, if not
unavoidable, to examine Hilbert modular forms also in a different, namely the adelic setting.
This is what we will introduce in this section.



2.2. Hilbert modular forms in the adelic setting 27

Let AF be the adele ring over the number field F , so that A∗
F is the group of ideles. In AF

and A∗
F , we distinguish the following subgroups

F∞ :=
∏
v|∞

R , ôF :=
∏

p<∞
op , F+

∞ :=
∏
v|∞

R>0 , ô∗F :=
∏

p<∞
o∗p .

For x ∈ AF , denote by

x∞ the archimedean part and by xf the non-archimedean part.

So we have x = x∞xf . We will also use this notation for a global element x ∈ F , in this
case we understand x to be embedded diagonally into AF .

We remind the reader of the space of so-called Schwartz-Bruhat (or simply Schwartz) func-
tions, which play an essential role in the adelic theory because they admit an adelic Fourier
expansion (cf. [29, § 6A] or [8, § 3.1]). For the time being, we will only encounter Schwartz-
Bruhat functions on AF . Still we prefer to give a slightly more general definition because
Schwartz-Bruhat functions on the group GL2(AF ) will come into play in later sections.

Definition 2.2.1 (Schwartz-Bruhat function). Let F be a totally real number field and
let X = Am

F be a finite-dimensional vector space over the adele ring AF . The space S(X)
of (adelic) Schwartz-Bruhat functions is generated by all functions of the form

φ : X → C , φ(x) =
∏
v|∞

φv(xv)
∏

p<∞
φp(xp)

where

(i) each φv and φp is a Schwartz-Bruhat function over the local vector space, i. e.
φv : Xv → C is infinitely differentiable and rapidly decreasing

with all derivatives rapidly decreasing for v | ∞ ,

φp : Xp → C is locally constant with compact support for p <∞ ,

(ii) φp is the characteristic function of om
p for almost every p.

We say that a function is a Schwartz-Bruhat function on AF /F if it is in S(AF ) and F -
invariant.

In GL2(AF ), we define the following subgroups

G∞ := GL2(R)n ,

G+
∞ := GL+

2 (R)n ,

K∞ := O2(R)n ,

K+
∞ := SO2(R)n ,

K := K∞Kf where Kf :=
∏

p<∞
Kp
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and each Kp is a maximal compact open subgroup of GL2(Fp) with det(Kp) = o∗p, and such
that Kp = GL2(op) for almost every p.

A größencharacter of F is a unitary character of A∗
F that is trivial on F ∗. We often identify

A∗
F with the centre

Z(AF ) := Z(GL2(AF )) =

{(
a 0
0 a

) ∣∣∣ a ∈ A∗
F

}

of GL2(AF ) and F+
∞ with

Z+
∞ :=

{(
a 0
0 a

) ∣∣∣ a ∈ F+
∞

}
⊆ G+

∞ .

Using this identification we can view any größencharacter also as a character on Z(AF ),
trivial on Z(GL2(F )).

When dealing with matrices in GL+
2 (R) it is convenient to use the Iwasawa decomposition,

which allows us to write g ∈ GL+
2 (R) uniquely as

g =

(
a b

c d

)
=

(
u 0
0 u

)(
y1/2 xy−1/2

0 y−1/2

)
r(θ) , (2.2)

where

r(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
and u, y > 0, x ∈ R, θ ∈ [0, 2π[. The variables (a, b, c, d) and (u, x, y, θ) are connected by
the following identities,

det(g) = ad− bc = u2 ,
ai+ b

ci+ d
= x+ iy , ci+ d = uy−1/2eiθ .

We denote by gC the complexification of the Lie algebra Lie(G∞) and by z the centre of the
universal enveloping algebra of gC. We remind the reader that Lie(G+

∞) = Lie(G∞) because
the Lie algebra depends only on the tangent space at 1 which is identical in both cases.

Definition 2.2.2.

(i) We say that a function f : GL2(AF ) → C is slowly increasing if there exist an integer
N and a constant C > 0 such that

|f(g)| ≤ C‖g‖N for all g ∈ GL2(AF )

where we identify g with (g,det(g)−1) ∈M2(AF )× AF
∼= A5

F and put

‖g‖v := max{|gi|v | i = 1, . . . , 5} and ‖g‖ :=
∏
v

‖g‖v .
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(ii) A function f : GL2(AF ) → C is right-K-finite if the complex vector space spanned by
all K-right translates of f is finite dimensional, i. e.

dim
〈
g 7→ f(gk) | k ∈ K

〉
C <∞ .

Similarly, f : G∞ → C is z-finite if

dim
〈
Xf | X ∈ z

〉
C <∞

where the elements of z act as differential operators on f as explained in Proposi-
tion 2.1.15.

The notion of K- and z-finiteness will play an important role in the now following definition
of automorphic forms. We will explain them a little further in Remark 2.2.8.

Definition 2.2.3 (Automorphic Form). Let G∞,K be as above. Let f : GL2(AF ) → C
be a function with the following properties

(A.1) there exists a größencharacter ω of F , the so-called central character, such that

f(zg) = ω(z)f(g) for all z ∈ Z(AF ), g ∈ GL2(AF ) ,

(A.2) f is left-GL2(F )-invariant, i. e.

f(γg) = f(g) for all γ ∈ GL2(F ), g ∈ GL2(AF ) ,

(A.3) f is right-K-finite,

(A.4) f is slowly increasing,

(A.5) f is smooth if viewed as a function on G∞,

(A.6) f is z-finite if viewed as a function on G∞.

Such an f is called an (adelic) automorphic form on GL2(AF ) and the space of all adelic
automorphic forms for a fixed größencharacter ω will be denoted by A(ω). If additionally,
the following cuspidality condition

(A.7) ∫
AF /F

f

((
1 x

0 1

)
g

)
dx = 0 for almost every g ∈ GL2(AF )

holds then we call f (adelic) cusp form. The subspace of cusp forms will be denoted by
A0(ω).
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Proposition 2.2.4. Let L2
0

(
ω,GL2(AF )

)
be the space of all functions f : GL2(AF ) → C

such that f satisfies (A.1), (A.2) and (A.7) and such that |f | is square-integrable on
Z(AF )GL2(F )\GL2(AF ). This space is a Hilbert space with respect to the inner product

〈f1, f2〉 :=
∫

Z(AF )GL2(F )\GL2(AF )

f1(g)f2(g) dg .

The right regular representation of GL2(AF ) on L2
0

(
ω,GL2(AF )

)
is unitary and A0(ω) is

equal to the space of K-finite elements in L2
0

(
ω,GL2(AF )

)
.

Proof. See [65, § 3, No. 2] and [32, § 3, No. 1].

Proposition 2.2.5 (Adelic Fourier expansion). Let φ be a Schwartz-Bruhat function
on AF /F and let τ be the standard character on AF defined by

τ(x) =
∏
v|∞

τv(xv)
∏

p<∞
τp(xp) where

{
τv(xv) = exp(2πixv)

τp(xp) = exp
(
− 2πi(λ ◦ TrFp/Qp

)(xp)
)

where λ is the canonical map Qp → Qp/Zp → Q/Z and TrFp/Qp
is the trace function

Fp → Qp if p lies over the rational prime p. Then the Fourier series∑
ξ∈F

τ(xξ)
∫

AF /F

τ̄(uξ)φ(u) du

converges absolutely and uniformly to φ(x).

Proof. See [28, Appendix A.2].

Definition 2.2.6 (Fourier coefficient). Let f be an automorphic form on GL2(AF ). For
ξ ∈ F we call the function

Wξ : GL2(AF ) → C

given by

Wξ(g) :=
∫

AF /F

τ̄(uξ)f

((
1 u

0 1

)
g

)
du

the ξ-th Fourier coefficient of f .

Remark 2.2.7. The Fourier expansion introduced in Proposition 2.2.5 cannot be applied
to f directly, as it is not a function on AF /F . Instead we consider

φg(x) := f

((
1 x

0 1

)
g

)
for g ∈ GL2(AF ) .
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The GL2(F )-invariance of f immediately implies the F -invariance of φg. Therefore, φg has
a Fourier expansion given by

φg(x) =
∑
ξ∈F

τ(xξ)
∫

AF /F

τ̄(uξ)φg(u) du =
∑
ξ∈F

τ(xξ)
∫

AF /F

τ̄(uξ)f

((
1 u

0 1

)
g

)
du

=
∑
ξ∈F

Wξ(g)τ(xξ) .

For ξ = 0 the Fourier coefficient Wξ(g) becomes the integral in (A.7). So we see that, as in
the classical setting, adelic cusp forms are forms whose 0-th Fourier coefficient vanishes.

We will be interested in a certain subspace of A(ω) which is defined by replacing the con-
ditions (A.3) and (A.6), that is K- and z-finiteness, by stronger requirements. In order to
motivate the exact definition of this subspace, we first add a few remarks concerning these
conditions.

Remark 2.2.8.

(i) Let f be a right-K-finite function viewed as a function on G∞ alone, which is then
right-K∞-finite, in particular, it is right-K+

∞-finite. This implies that the right regular
representation ρ of the compact abelian group K+

∞ = SO2(R)n on the space

E :=
〈
g 7→ f(gk) | k ∈ K+

∞
〉

of K+
∞-right translates of f decomposes into a finite number of one-dimensional sub-

representations E1, . . . , Er, and that for each Ej there is a mj ∈ Zn such that the
K+
∞-action is given by

ρ
(
r(θ)

)
= eiTr(mjθ)

(cf. Example 2.1.9). We will shortly make the additional requirement that the repre-
sentation ρ : K+

∞ → GL(E) itself be irreducible and hence one-dimensional.

(ii) Consider the Lie algebra gl2(C), which is the complexification of the Lie algebra of
GL2(R). As a C-vector space it is generated by the matrices

Z :=

(
1 0
0 1

)
, H :=

(
1 0
0 −1

)
, L :=

(
0 0
1 0

)
and R :=

(
0 1
0 0

)
and the multiplication is the Lie bracket [X,Y ] = XY −Y X. The universal enveloping
algebra U(gl2(C)) can be realized as the tensor algebra of gl2(C) modulo the ideal J
generated by all

X ⊗ Y − Y ⊗X − [X,Y ] where X,Y ∈ gl2(C) ,

i. e., all elements in U(gl2(C)) are of the form

X1 ⊗ . . .⊗Xm mod J for some m ∈ N0, Xi ∈ {Z,H,L,R} . (2.3)
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Now Z clearly commutes with every element in gl2(C), so that we can rewrite (2.3)
as Z⊗r ⊗ X mod J for some non-negative integer r and an element X that, when
written in the form (2.3), contains no factor Z. Note that any such X is an element
of U(sl2(C)) since sl2(C) is the subalgebra of gl2(C) spanned by H,L,R.

The centre Z(U(gl2(C))) is therefore generated as an algebra by Z and Z(U(sl2(C))).
To determine the latter we consider the Casimir element C of sl2(C), given by

C =
1
2
H2 +RL+ LR .

It is a general result from basic Lie theory that the Casimir element lies in the center
of the corresponding universal enveloping Lie algebra (cf. [9, § 10]). In our particular
situation, however, C not only lies in Z(U(sl2(C))) but generates it. This can be seen
by applying the Harish-Chandra isomorphism, which establishes an algebra isomor-
phism between Z(U(sl2(C))) and U(h)W , the latter being the algebra of Weyl-group
invariants in the universal enveloping algebra of the maximal torus h generated by
H. In our case, it is not difficult to verify that the Casimir element C is mapped to a
generator of U(h)W , so that C itself must be a generator of Z(U(sl2(C))). The explicit
calculation together with further details on the Harish-Chandra isomorphism can be
found in [43, VIII § 5] or [44, IV § 7].

Now, the usual representation of gl2(R) as left-invariant differential operators on
C∞(GL+

2 (R)) extends to U(gl2(C)). In this interpretation, the Casimir element C cor-
responds to the Laplace operator ∆. More precisely, if we write an element g ∈ GL+

2 (R)
according to (2.2) in the Iwasawa coordinates (u, x, y, θ) then the Laplace operator in
these coordinates takes the form

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ y

∂2

∂x∂θ

(see [8, § 2.1, eq. (1.29)]) and it coincides with − 1
2C (see [8, Prop. 2.2.5]). Thus, we

can identify
−4∆ = H2 + 2RL+ 2LR .

Now let us return to the Lie algebra g = Lie(G∞) and recall that G∞ consists of n
copies of GL2(R), one for each archimedean place v of F . Hence, g is isomorphic to n
copies of gl2(R), so let us denote by Zv and ∆v the elements Z and ∆, respectively,
belonging to the v-th component of g. From what we have seen above we deduce that
z is generated by all Zv and ∆v.

By (A.1), we already know that the elements Zv act as scalars on every automorphic
form. Consequently, condition (A.6) of z-finiteness is really a condition on the Laplace
operators ∆v, requiring that dimC〈∆m

v f | m ∈ N0〉 <∞ for each archimedean place v.

In the space to be defined below we will demand that the spaces 〈∆m
v f | m ∈ N0〉

are not only finite- but one-dimensional and that every ∆v acts as a certain specified
scalar.
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Definition 2.2.9 (Hilbert automorphic form). Let G∞,Kf ,K∞,K
+
∞ be as above. Fix

a vector k ∈ Nn
0 of non-negative integers, and let χ : Kf → C∗ be a character. For a function

f : GL2(AF ) → C, consider the following set of conditions:

(H.1) there exists a größencharacter ω of F such that

f(zg) = ω(z)f(g) for all z ∈ Z(AF ), g ∈ GL2(AF ) ,

(H.2) f is left-Z+
∞GL2(F )-invariant, i. e.

f(γg) = f(g) for all γ ∈ Z+
∞GL2(F ), g ∈ GL2(AF ) ,

(H.3) f is an eigenfunction under right translation with K∞ ×Kf , more precisely

f(gkr(θ)) = χ(k)e−iTr(kθ)f(g) for all g ∈ GL2(AF ), k ∈ Kf , r(θ) ∈ K+
∞

(H.4) f is slowly increasing,

(H.5) as a function on G∞, f is smooth,

(H.6) f is an eigenfunction of ∆v for all archimedean places v, more precisely

∆v f = −kv

2

(
kv

2
− 1
)

f for all archimedean places v ,

(H.7) the cuspidality condition∫
AF /F

f

((
1 x

0 1

)
g

)
dx = 0 for almost every g ∈ GL2(AF ) .

Then

(i) we call f a (holomorphic) Hilbert automorphic form for the group Kf of weight k with
character χ if it satisfies conditions (H.2)–(H.6), and we denote the space of all such
f by Hk(Kf , χ),

(ii) we say that f ∈ Hk(Kf , χ) has central character ω if it satisfies (H.1), and we denote
the space of all such f by Hk(Kf , χ, ω),

(iii) we say that f ∈ Hk(Kf , χ) is a (holomorphic) Hilbert automorphic cusp form if it
satisfies (H.7). We denote the space of all such cusp forms by H0

k(Kf , χ) and the
space of all such cusp forms with central character ω by H0

k(Kf , χ, ω).

Remark 2.2.10. Not every f ∈ Hk(Kf , χ) has a central character because the existence
of a größencharacter as in (H.1) cannot be deduced from (H.2)–(H.6). It can be shown,
however, that Hk(Kf , χ) is a direct sum of finitely many spaces Hk(Kf , χ, ω) where ω runs
through a suitable set of größencharacters (see for example [28, § 3.1, Corollary, p. 95]). We
will only prove this statement for a specific group Kf (see Proposition 2.2.13 below).
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Theorem 2.2.11. The space of Hilbert automorphic forms is finite-dimensional,

dimHk(Kf , χ) <∞ .

Proof. See [6, § 4, 4.3].

From now on we will assume that Kf is the group K0(d, n) given by

K0(d, n) :=
∏

p<∞

{(
a b

c d

)
∈

(
op d−1

p

npdp op

) ∣∣∣ ad− bc ∈ o∗p

}

where d is the different of the number field F and n is an integral ideal of F . We also make
a specific choice for the character χ under consideration: Fix a character

χ0 : (oF /n)∗ → C∗ .

The lower right entry d of a matrix in K0(d, n) is an element in
∏

p op that is a unit at every
p | n. Any such element determines a unique dn ∈ (oF /n)∗ such that dn ≡ dp mod p for all
p | n. Thus χ0 gives rise to a map

χ : K0(d, n) → C∗ , χ

((
a b

c d

))
:= χ0(dn mod n) .

It is readily verified that this map is multiplicative and hence a character of K0(d, n). Note
that χ = 1 if and only if χ0 = 1. We will always assume that χ is of this form.

Lemma 2.2.12. If Hk

(
K0(d, n), χ, ω

)
6= {0} then χ and ω satisfy the following conditions:

(i) ω(z) = χ
((
z 0
0 z

))
= χ0(zn mod n) for all z ∈ ô∗F .

(ii) ω(z) = sgn(z)k for all z ∈ F ∗
∞.

In particular, if χ = 1 then ω is unramified at every non-archimedean place.

Proof. Part (i) follows from (H.1) and (H.3) since z ∈ ô∗F , viewed as a scalar matrix, lies in
both Z(AF ) and Kf . In order to prove (ii) observe that ω is unitary, so every archimedean
component ωv must be either 1 or sgn (cf. Example 2.1.4). Apply (H.1) and (H.3) to
elements of the form

r
(
(0, . . . , 0, π, 0, . . . , 0)

)
= (I2, . . . , I2,−I2, I2, . . . , I2)

(I2 the (2 × 2)-identity matrix). It then becomes evident that ωv = sgnkv for every
archimedean place v.
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Proposition 2.2.13. The spaces of Hilbert automorphic forms and Hilbert automorphic
cusp forms can be decomposed in the following way

Hk

(
K0(d, n), χ

)
=
⊕

ω

Hk

(
K0(d, n), χ, ω

)
,

H0
k

(
K0(d, n), χ

)
=
⊕

ω

H0
k

(
K0(d, n), χ, ω

)
where the sums on the right hand side run over all größencharacters ω such that the condi-
tions (i) and (ii) of the previous lemma are satisfied.

Proof. Let r ≥ 0 be a non-negative integer. For any prime ideal p - n, choose a prime element
πp ∈ op. We claim that for f ∈ Hk

(
K0(d, n), χ

)
and x ∈ GL2(AF ), the expression f(πr

px)
does not depend on the choice of πp. Indeed, if πp and π̃p are prime elements in op, which
we embed into AF , then π−1

p π̃p = ε where εp ∈ o∗p and εv = 1 for all other places. Thus, the

diagonal matrix
(
ε 0
0 ε

)
lies in K0(d, n) and χ

((
ε 0
0 ε

))
= 1 since p - n. By property (H.3) it

follows that f(π̃r
px) = f(πr

pxε
r) = f(πr

px) for all f ∈ Hk

(
K0(d, n), χ

)
and all x ∈ GL2(AF ).

Now consider the operator S(pr) on Hk

(
K0(d, n), χ

)
defined by(

f |S(pr)
)
(x) := f(πr

px) for all x ∈ GL2(AF )

(cf. [66, § 2]). It is clear that S(p) maps Hk

(
K0(d, n), χ

)
onto itself, so it is well-defined.

Furthermore, S(p) is of finite order because S(p)h+
= S(ph+

) = S(1), which is the identity
operator. As Hk

(
K0(d, n), χ

)
is finite-dimensional, each S(p) must be diagonalizable.

The operators S(p) for different prime ideals p - n commute. Hence, Hk

(
K0(d, n), χ

)
has a basis of simultaneous eigenfunctions of all such S(p). By [66, Prop. 2.1], any such
eigenfunction is an automorphic form for some größencharacter ω of finite order. Thus,
Hk

(
K0(d, n), χ

)
is the direct sum of the spaces Hk

(
K0(d, n), χ, ω

)
, which are {0} whenever

the conditions (i) and (ii) of Lemma 2.2.12 are not fulfilled.

The above argumentation remains valid when considering the subspace of cusp forms.

Corollary 2.2.14. The spaces of Hilbert automorphic forms and Hilbert automorphic cusp
forms of trivial character can be decomposed in the following way

Hk

(
K0(d, n), 1

)
=
⊕

ω

Hk

(
K0(d, n), 1, ω

)
,

H0
k

(
K0(d, n), 1

)
=
⊕

ω

H0
k

(
K0(d, n), 1, ω

)
where the sums on the right hand side run over all größencharacters ω such that

ωv = sgnkv for all v | ∞ , ωp is unramified for all p <∞ .

Proof. Apply the previous proposition to χ = 1.
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2.3 Correspondence between classical and adelic Hilbert

modular forms

We have defined classical Hilbert modular forms as certain functions on Hn and Hilbert
automorphic forms as functions on GL2(AF ). The aim in this section is to describe the
relationship between both. Readers familiar with the theory of elliptic modular forms will
know that with the help of the strong approximation theorem for GL2(AQ),

GL2(AQ) = GL2(Q)GL+
2 (R)K0 for a suitable K0 ⊆

∏
p

GL2(Zp) ,

a modular form f ∈ Sk(Γ, χ) induces the automorphic form φf : GL2(AQ) → C given by

φf (g) := j(g∞, i)−kχ(k0)f(g∞ · i) for g = γg∞k0 ∈ GL2(Q)GL+
2 (R)K0

(see [29, Prop. 3.1]). In the case of an arbitrary number field F , the approximation theorem
becomes more complicated since it must take into account the possibly nontrivial class
number of F . As a consequence, we will encounter some technical difficulties in establishing
the correspondence between classical and adelic automorphic forms.

The main reference for this section is [66, § 2].

As usual, let F be a totally real number field of narrow class number h+. For an integral
ideal n and a fractional ideal c of F , we put

Γ0(c, n) :=

{(
a b

c d

)
∈

(
oF c−1

nc oF

) ∣∣∣ ad− bc ∈ o∗+F

}
.

Further, let

c1, . . . , ch+ be integral representatives of the narrow ideal classes of F ,

t1, . . . , th+ ∈ A∗
F generators of cj with t∞j = 1 ,

and we fix the matrices

xj =

(
1 0
0 tj

)
, so that (det(xj)) = (tj) = cj for all j = 1, . . . , h+ .

Theorem 2.3.1 (Strong Approximation Theorem).
We have the following decompositions

AF = F + (F∞ × ôF ) ,

A∗
F =

h+∐
j=1

tjF
∗(F+

∞ × ô∗F ) ,

GL2(AF ) =
h+∐
j=1

GL2(F )xj

(
G+
∞ ×K0(d, n)

)
.
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Proof. The approximation theorem for the additive group AF can be found in [55, Thm. 5-8].
For the multiplicative groups A∗

F and GL2(AF ) see [71, I § 7]. The proof of a more general
version of the Strong Approximation Theorem for an arbitrary linear algebraic group is given
in [45], see also [46].

Corollary 2.3.2. The factor group AF /F is isomorphic to

AF /F ∼= (F∞ × ôF )/oF .

Proof. Use the first part of the previous theorem and the fact that F ∩ (F∞× ôF ) = oF .

Lemma 2.3.3. Every g ∈ GL2(AF ) can be written as

g = γ

(
1 0
0 tj

)
g∞k0 for some γ ∈ GL2(F ), g∞ ∈ G+

∞, k0 ∈ K0(d, n) ,

where j and the coset γΓ0(cjd, n) are uniquely determined by g. More precisely, if we have

g = γ

(
1 0
0 tj

)
g∞k0 = γ̃

(
1 0
0 tj

)
g̃∞k̃0 ,

then there exists an element γ0 = γ∞0 γf
0 ∈ Γ0(cjd, n) such that

γ̃ = γγ−1
0 , g̃∞ = γ∞0 g∞ and k̃0 = (x−1

j γ0xj)fk0 .

Proof. The existence of the decomposition as well as the uniqueness of j follow from the
Strong Approximation Theorem 2.3.1. If

g = γxjg∞k0 = γ̃xj g̃∞k̃0 where xj =

(
1 0
0 tj

)

then it is immediate that γ̃−1γ = xj g̃∞k̃0(g∞k0)−1x−1
j lies in

GL2(F ) ∩ xj

(
G+
∞ ×K0(d, n)

)
x−1

j = Γ0(cjd, n) .

Let us call this element γ0, so γ̃ = γγ−1
0 , and hence g̃∞k̃0 = x−1

j γ0xjg∞k0. In this last
expression, we compare the archimedean and non-archimedean parts, respectively, recalling
that x∞j is trivial, to get the desired result.

For the rest of this section, we fix a character

χ0 : (oF /n)∗ → C∗
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and the corresponding character

χ : K0(d, n) → C∗ , χ

((
a b

c d

))
:= χ0(dn mod n)

of K0(d, n). For all j = 1, . . . , h+ put

χj(γ) := χ
(
(x−1

j γxj)f
)−1 = χ(x−1

j γfxj)−1 for γ ∈ Γ0(cjd, n) .

It is clear that each χj is a well-defined character of Γ0(cjd, n) since x−1
j γfxj ∈ K0(d, n)

whenever γ ∈ Γ0(cjd, n). The characters χ0, χ and χj for j = 1, . . . , h+ will be fixed
throughout the rest of this section.

After these preparatory remarks, we are now ready to establish the correspondence between
automorphic and classical Hilbert modular forms.

Proposition 2.3.4. Let f ∈ Hk

(
K0(d, n), χ

)
be a Hilbert automorphic form for the group

K0(d, n) of weight k with character χ. For j ∈ {1, . . . , h+} put

fj : Hn → C , z 7→ j(g∞, i)k f(xjg∞)

where g∞ ∈ G+
∞ is an arbitrary element satisfying g∞i = z. Then

fj ∈Mk

(
Γ0(cjd, n), χj

)
for all j = 1, . . . , h+ .

Moreover, if f ∈ H0
k

(
K0(d, n), χ

)
then fj ∈ Sk

(
Γ0(cjd, n), χj

)
for all j = 1, . . . , h+.

Proof. Let z ∈ Hn. First, we need to show that the definition of fj does not depend on the
particular choice of g∞. Suppose that g∞, h∞ ∈ G+

∞ are such that g∞i = h∞i = z. Then
g−1
∞ h∞ stabilizes i and must therefore be an element r(θ) in SO2(R)n = K+

∞. Thus,

j(h∞, i)k f(xjh∞) = j
(
g∞, r(θ)i

)k
j
(
r(θ), i

)k
f
(
xjg∞r(θ)

)
= j(g∞, i)keikθe−ikθf(xjg∞) ,

which shows that fj is well-defined. Now, take an element γ = γ∞γf ∈ Γ0(cjd, n). Then
γz = γg∞i = γ∞g∞i, hence(

fj |kγ
)
(z) = j(γ, z)−kfj(γz) = j(γ, z)−kj(γg∞, i)k f(xjγ

∞g∞)

= j(γ, z)−kj(γ, g∞i)kj(g∞, i)k f(xjγ
∞g∞) = j(g∞, i)k f(xjγ

∞g∞) .

Since the archimedean part of xj is trivial, xj commutes with γ∞g∞. Further note that f
is left-GL2(F )-invariant and that x−1

j γfxj ∈ K0(d, n). Thus,(
fj |kγ

)
(z) = j(g∞, i)k f(γ−1γ∞g∞xj) = j(g∞, i)k f

(
(γf )−1g∞xj

)
= j(g∞, i)k f

(
g∞xj(x−1

j γfxj)−1
)

= χ(x−1
j γfxj)−1 j(g∞, i)k f(g∞xj)

= χj(γ) j(g∞, i)k f(xjg∞) = χj(γ)fj(z) .
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To complete the proof of the first assertion, it remains to show that the functions fj are
holomorphic. This is a consequence of f being smooth and satisfying the Laplace differential
equation. We will not carry out the details since they would require a lengthy discussion of
the weight lowering operator (cf. for example [8, § 2.1, Eq. (1.2)]). However, the proof is
analogous to the case F = Q, which can be found in [29, Proof of Prop. 2.1] and [30, Ch. I,
§ 4.5].

Finally suppose that f is a cusp form. We need to verify that∫
Rn/oF

(fj |kγ)(x+ iy) dx = 0 for all j = 1, . . . , h+ and all γ ∈ GL+
2 (F ) .

Here, y is an arbitrary element in Rn
>0. We choose y = (1, . . . , 1) and put

g∞ :=

((
1 xv

0 1

))n

v=1

, so that g∞i = x+ iy =: z .

Note that j(g∞, i) = 1. Now fix j ∈ {1, . . . , h+} and some γ ∈ GL2(F ). A short calculation,
similar to those above, yields (fj |kγ)(z) = f(xjγg∞). Splitting γ into its archimedean part
γ∞ and its non-archimedean part γf and making use of (H.2), we can even show(

fj |kγ
)
(z) = f(g∞h) where h := (γf )−1xjγ

f ∈ GL2(A) .

Thus we can apply Corollary 2.3.2 to derive the following identity from the cuspidality
condition (H.7) on f∫

Rn/oF

(
fj |kγ

)
(z) dx =

∫
Rn/oF

f

((
1 x

0 1

)
h

)
dx = const·

∫
AF /F

f

((
1 x

0 1

)
h

)
dx = 0 ,

which proves that each fj is a cusp form.

Proposition 2.3.5. For every j = 1, . . . , h+, let there be given a Hilbert modular form

fj ∈Mk(Γ0(cjd, n), χj) .

The function f : GL2(AF ) → C defined by

f(γxjg∞k0) := χ(k0) (fj |kg∞) (i) = χ(k0)j(g∞, i)−kfj(g∞i) ,

where the notation is as in Lemma 2.3.3, is an element of Hk

(
K0(d, n), χ

)
. Moreover, if all

fj are cusp forms then so is f .

Proof. Lemma 2.3.3 guarantees that f is well-defined since for fj ∈ Mk(Γ0(cjd, n), χj) and
γ0 ∈ Γ0(cjd, n), the identities

χ((x−1
j γ0xj)fk0) = χj(γ0)−1χ(k0) and f |k(γ∞0 g∞) = (f |kγ∞0 )|kg∞ = χj(γ0)f |kg∞
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hold. Now, verify the conditions (H.2)–(H.6) of Definition 2.2.9:

(H.2) The GL2(F )-invariance is obvious. Let z ∈ Z+
∞. If g = γxjg∞k0 as before then

f(zg) = χ(k0)j(zg∞, i)−kfj(zg∞i) = z−k(z2)
k
2 χ(k0)j(g∞, i)−kfj(g∞i) = f(g)

since z is totally positive.

(H.3) For k ∈ K0(d, n), r(θ) ∈ SO2(R)n and g = γxjg∞k0 as before,

f(gkr(θ)) = χ(k0k)j(g∞r(θ), i)−kfj(g∞r(θ)i)

= χ(k0)χ(k)j(g∞, i)−kj(r(θ), i)−kfj(g∞i) = χ(k)e−ikθf(g) .

(H.4) We have already seen in Remark 1.1.6 that the functions fj are regular at the cusps.
From this, it follows that f is slowly increasing (cf. [49, § 2]).

(H.5) Smoothness is clear since the fj are holomorphic.

(H.6) For an arbitrary archimedean place v, we view f as a function on the v-th component

of G+
∞ ⊆ GL2(AF ). So for an element g =

(∗ ∗
c d

)
∈ GL2(R)+,

f(g) = C(ci+ d)−kv det(g)kv/2f̃j(gi)

where f̃j is the function fj viewed as a function on the v-th component of Hn alone
and C = χ(k0)j(g∞, i)−k(ci + d)kv det(g)−kv/2 is a constant independent of g. In
Iwasawa coordinates (u, x, y, θ), as introduced in (2.2), the function f becomes

f(u, x, y, θ) = C(uy−1/2eiθ)−kvukv f̃j(x+ iy) = Cykv/2e−ikvθf̃j(x+ iy) .

In order to evaluate ∆vf we need the second order partial derivatives ∂2/∂x2, ∂2/∂y2

and ∂2/∂x∂θ of f . It is easily verified that they are

∂2

∂x2
f(u, x, y, θ) = C ykv/2 e−ikvθ f̃ ′′j (z) ,

∂2

∂y2
f(u, x, y, θ) = Ce−ikvθ

(
kv

2

(
kv

2
− 1
)
y

kv
2 −2f̃j(z) + ikvy

kv
2 −1f̃ ′j(z)− y

kv
2 f̃ ′′j (z)

)
,

∂2

∂x∂θ
f(u, x, y, θ) = −C ykv/2 ikve

−ikvθ f̃ ′j(z) ,

where z = x+ iy. Hence the Laplacian satisfies

∆vf(u, x, y, θ) = −k
2

(
k

2
− 1
)

f(u, x, y, θ) .

That f is a cusp form if all fj ’s are cusp forms can be verified by a calculation similar to the
one in the proof of Proposition 2.3.4: Let h ∈ GL2(AF ) and x ∈ AF . Choose an arbitrary
element r ∈ F ∗ satisfying sgn(rv) = sgn(dethv) for all archimedean places v | ∞. Because
of the GL2(F )-invariance of f we get

f

((
1 x

0 1

)
h

)
= f

((
r 0
0 1

)(
1 x

0 1

)
h

)
= f

((
1 rx

0 1

)(
r 0
0 1

)
h

)
.
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By replacing h by
(
r 0
0 1

)
h we may therefore assume without loss of generality that the

archimedean part h∞ of h has a totally positive determinant, i. e. h∞ ∈ G+
∞. Using a

similar argument and the Strong Approximation Theorem 2.3.1 we may further assume that

x = x∞ + xf where x∞ ∈ F∞, xf ∈ ôF .

As before write(
1 x

0 1

)
h = γxjg∞k0 where γ ∈ GL2(F ), g∞ ∈ G+

∞, k0 ∈ K0(d, n) ,

so that (
1 x∞

0 1

)
h∞ = γ∞g∞ and

(
1 xf

0 1

)
hf = γfxjk0 .

In fact, γ ∈ GL+
2 (F ) because of our assumption on h∞. It is easily verified that

j(g∞, i) = j

(
γ−1

(
1 x∞

0 1

)
h∞, i

)
= j(γ−1, z)j

((
1 x∞

0 1

)
, h∞i

)
j(h∞, i)

= j(γ−1, z)j(h∞, i) where z :=

(
1 x∞

0 1

)
h∞i ∈ Hn .

Hence

f

((
1 x

0 1

)
h

)
= χ(k0)j(g∞, i)−kfj(g∞i)

= χ(k0)j(γ−1, z)−kj(h∞, i)−kfj(γ−1z)

= χ(k0)j(h∞, i)−k
(
fj |kγ−1

)
(z) .

Note that j(h∞, i) does not depend on x, and neither does χ(k0) because χ is trivial on
integral matrices of the form

(1 ∗
0 1

)
. Therefore∫

AF /F

f

((
1 x

0 1

)
h

)
dx = const ·

∫
Rn/oF

(
fj |kγ−1

)
(z) dx = 0 .

Which concludes the proof that f is a cusp form.

Remark 2.3.6. Clearly, if all fj are 0 then so will be f . Hence, if we wish to construct
a non-trivial f we need to make sure that at least one of the fj ’s does not vanish. This,
according to Proposition 1.1.8(iii), can only be the case if there is at least one j ∈ {1, . . . , h+}
such that

sgn(ε)k = χj

((
ε 0
0 ε

))
for all ε ∈ o∗F .

But this really amounts to a condition on χ0 because of the relation

χj

((
ε 0
0 ε

))
= χ

( ε 0
0 ε

)f
−1

= χ0(ε mod n)−1 for all ε ∈ o∗F .
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As sgn(ε) = sgn(ε−1) we may even omit the exponent −1 and so obtain the equation

sgn(ε)k = χ0(ε mod n) for all ε ∈ o∗F ,

which must be satisfied if f 6= 0. Recall that we have encountered this condition before as it
is implicitly stated in Lemma 2.2.12. Now it becomes clear that this lemma can be viewed
as the adelic version of Proposition 1.1.8(iii).

We finish this section by summarizing the results of the previous propositions and thus
obtain the final version of a correspondence theorem between classical and adelic Hilbert
modular forms.

Theorem 2.3.7. The map (f1, . . . , fh+) 7→ f constructed in Proposition 2.3.5 induces C-
vector space isomorphisms

h+⊕
j=1

Mk

(
Γ0(cjd, n), χj

) ∼−→ Hk

(
K0(d, n), χ

)
and

h+⊕
j=1

Sk

(
Γ0(cjd, n), χj

) ∼−→ H0
k

(
K0(d, n), χ

)
.

The inverse map is described in Proposition 2.3.4.

Proof. Proposition 2.3.5 shows that the map (f1, . . . , fh+) 7→ f is a well-defined homomor-
phism between the given spaces, which maps tuples of cusp forms to cusp forms. It is
clear, by construction, that the map f 7→ (f1, . . . , fh+) introduced in Proposition 2.3.4 is its
inverse.



Chapter 3

The action of the Hecke algebra

on automorphic forms

Our next aim is to decompose the space of Hilbert modular forms into subspaces of new-
forms. Whether we consider classical or adelic modular forms is irrelevant because after
the discussion in the previous chapter we know how to translate the one into the other.
However, it turns out that our task becomes easier in the adelic setting because here we can
make full use of representation theoretic methods. More precisely, the decomposition into
spaces of newforms will be achieved by studying the operation of the Hecke algebra on the
space of adelic modular forms and its irreducible subrepresentations. This will be explained
in detail in Section 3.4.

As a preparation, the first three sections of this chapter are devoted to a short overview of
the local and global Hecke algebra of GL2. Most of the results can be found in [41, § 2] and
[32, § 1].

3.1 The local Hecke algebra (non-archimedean case)

As usual, let Fp be a p-adic field. The group GL2(Fp) has a Haar measure dg, which we
normalize in such a way that K := GL2(op), the standard maximal compact open subgroup
of GL2(Fp), has volume 1.

Definition 3.1.1 (Hecke algebra of GL2(Fp)). We put

Hp := {f : GL2(Fp) → C | f is locally constant with compact support} .

43
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Equipped with the convolution product

(f1 ∗ f2)(g) :=
∫

GL2(Fp)

f1(h)f2(h−1g) dh ,

the space Hp becomes an associative algebra, which we call the Hecke algebra of GL2(Fp).

Definition 3.1.2 (Admissible representation of Hp). Let π : Hp → GL(E) be a rep-
resentation on a complex vector space E. We say that π is admissible if the following two
conditions are satisfied:

(i) For any x ∈ E, there exists an f ∈ Hp such that π(f)x = x.

(ii) For any f ∈ Hp, the space π(f)E is finite-dimensional.

Definition 3.1.3 (Induced representation of Hp). For a locally K-finite representation
π : GL2(Fp) → GL(E) on a Hilbert space E, we define a representation π̃ : Hp → GL(E) by

π̃(f)x :=
∫

GL2(Fp)

f(g)π(g)x dg for all f ∈ Hp, x ∈ E .

Remark 3.1.4. Since π is locallyK-finite, the stabilizer StabGL2(Fp)(x) is an open subgroup
of GL2(Fp) for every x ∈ E, as was shown in Lemma 2.1.12. Thus, g 7→ π(g)x is a locally
constant function on GL2(Fp), as is f . So we can choose an open covering {Ui | i ∈ I} of
GL2(Fp) such that g 7→ f(g)π(g)x is constant on each Ui. Since the function f is compactly
supported, the integral in Definition 3.1.3 then reduces to a finite sum.

Proposition 3.1.5. If π : GL2(Fp) → GL(E) is an admissible representation in the sense
of Definition 2.1.13 then the induced representation π̃ : Hp → GL(E) is also admissible.
Conversely, if π̃ : Hp → GL(E) is admissible then it is induced by π : GL2(Fp) → GL(E)
defined by

π(g)x := π̃
(
λ(g)f

)
where f ∈ Hp is such that x = π̃(f)x ,

which is again admissible.

Proof. For x ∈ E, the stabilizer StabGL2(Fp)(x) is open by Lemma 2.1.12. Hence we can find
a compact open neighbourhood U of x contained in StabGL2(Fp)(x). Then f := vol(U)−1 ·1U ,
where 1U is the characteristic function of U , satisfies condition (i) of Definition 3.1.2.

Now let f ∈ Hp and let us consider elementary idempotents, i. e. functions on GL2(Fp) that
vanish outside of K and have the form

ξ(k) =
r∑

i=1

dimσi Trσi(k−1) with σi ∈ K̂ pairwise inequivalent
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on K. It is known that we can find such an elementary idempotent satisfying f ∗ξ = ξ∗f = f

(see [33, Ch. I, § 8]). Hence π(f) = π(f) ◦ π(ξ). Now, for every x ∈ E we have

π(ξ)x =
r∑

i=1

∫
K

dimσi Trσi(k−1)π(k)x dk =
r∑

i=1

prσi
(x)

where prσi
: E → E(σi) denotes the projection onto the σi-isotypic component of π. By

assumption, π is admissible and hence dimE(σi) < ∞ for all i. So we see that π(ξ) maps
E into a finite-dimensional space, and it follows that π(f)E = π(f)

(
π(ξ)E

)
is also of finite

dimension.

For the converse see [41, § 2].

Remark 3.1.6. Instead of (ii) in Definition 3.1.2, many authors, among them [41], choose
a slightly different condition. They only require that (ii) be satisfied if f is an elementary
idempotent. But in light of the proof just given, we see that both definitions are equivalent.

Although our main interest lies in the admissible representations of Hp, Proposition 3.1.5
allows us to study admissible representations of GL2(Fp) instead. In the remainder of this
section we will therefore give the complete classification of the latter.

Let µ1, µ2 be quasi-characters of F ∗
p and

B(µ1, µ2) :=

{
f : GL2(Fp) → C

∣∣∣ locally constant, f

((
a b

0 d

)
g

)
= µ1(a)µ2(d)

∣∣∣a
d

∣∣∣ 12
p
f(g)

}
.

Theorem 3.1.7. The right regular representation

ρ(µ1, µ2) : GL2(Fp) → GL
(
B(µ1, µ2)

)
is admissible.

(i) If µ1µ
−1
2 6= | · |p and µ1µ

−1
2 6= | · |−1

p then ρ(µ1, µ2) is irreducible. It will be denoted by
π(µ1, µ2).

(ii) If µ1µ
−1
2 = | · |p then the space B(µ1, µ2) contains exactly one proper invariant subspace

denoted by Bs(µ1, µ2), which is infinite-dimensional. The corresponding factor space
Bf (µ1, µ2) = B(µ1, µ2)/Bs(µ1, µ2) is one-dimensional.

(iii) If µ1µ
−1
2 = | · |−1

p then B(µ1, µ2) contains exactly one proper invariant subspace
Bf (µ1, µ2), which is one-dimensional and generated by χ◦det for some quasi-character
χ of F ∗

p . The factor space Bs(µ1, µ2) = B(µ1, µ2)/Bf (µ1, µ2) is infinite-dimensional.
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(iv) Any irreducible admissible representation of GL2(Fp) not appearing in the above list
is called absolutely cuspidal.

In the cases (ii) and (iii), we denote the representation ρ(µ1, µ2) : GL2(Fp)→GL
(
Bs(µ1, µ2)

)
by σ(µ1, µ2) and call it a special representation. The only equivalences between these repre-
sentations are

π(µ1, µ2) ∼ π(µ2, µ1) and σ(µ1, µ2) ∼ σ(µ2, µ1) .

Proof. See [41, Thm. 3.3 and Thm 2.7] and [32, § 1.10, Thm. 6 and § 1.11, Thm. 7].

Remark 3.1.8. The quasi-character χ mentioned in (iii) depends on µ1, µ2 in the following
way: The condition µ1µ

−1
2 = | · |−1

p implies that µ1 = ψ| · |rp and µ2 = ψ| · |r+1
p for some

unitary character ψ of o∗p and some r ∈ C (cf. Example 2.1.4). If we put χ := µ1| · |1/2
p then

a simple calculation shows that χ ◦ det is contained in B(µ1, µ2) and must therefore be a
generator. Thus, any special representation is of the form

σ
(
χ| · |−1/2

p , χ| · |1/2
p

)
∼ σ

(
χ| · |1/2

p , χ| · |−1/2
p

)
for some quasi-character χ of Fp .

Lemma 3.1.9. Suppose that n is an integral square-free ideal of F . If π : GL2(Fp) → GL(E)
is an absolutely cuspidal representation then E contains no element that is invariant under

K0(dp, np) =
(
K0(d, n)

)
p

=

{(
a b

c d

)
∈

(
op d−1

p

npdp op

) ∣∣∣ ad− bc ∈ o∗p

}
.

Proof. Let δ ∈ F ∗
p be a generator of dp. Suppose x ∈ E is K0(dp, np)-invariant. Then a

simple calculation shows that

π

((
1 0
0 δ−1

))
x ∈ E

is invariant under the group K0(1, np). But if p - n then K0(1, np) = GL2(op), and in this
case [41, Lemma 3.9] tells us that π cannot be absolutely cuspidal. If p | n then we apply
[65, Lemma 14] to obtain the same result.

3.2 The local Hecke algebra (real case)

Although Hecke algebras can also be defined for complex places, there is no need for us to do
so because we consider only totally real number fields. We will therefore omit the complex
case and refer the reader to [41, § 6] for further information.
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We choose the Haar measure dg on GL2(R) such that its maximal compact subgroup O2(R)
has volume 1.

Definition 3.2.1 (Hecke algebra for GL2(R)). Let

H1 := {f ∈ C∞
c (GL2(R)) | f is O2(R)-finite on both sides}

and
H2 :=

〈
matrix coefficients of irreducible representations of O2(R)

〉
.

If we endow H1 and H2 with the convolution product and define in a natural way

(ξ ∗ f)(g) :=
∫

O2(R)

ξ(k)f(k−1g) dk and (f ∗ ξ)(g) :=
∫

O2(R)

f(gk−1)ξ(k) dk

for f ∈ H1 and ξ ∈ H2 then HR := H1 + H2 becomes an algebra, which we call the Hecke
algebra of GL2(R).

Definition 3.2.2 (Admissible representation of HR). Let E ⊆ C(GL2(R)) be some
space consisting of continuous functions on GL2(R). Let π : HR → GL(E) be a representa-
tion. We say that π is admissible if the following conditions are satisfied:

(i) For any x ∈ E, there exist finitely many fi ∈ H1 and xi ∈ E such that x =
∑

i π(fi)xi.

(ii) For any f ∈ H1, the space π(f)E is finite-dimensional.

For X ∈ g and f ∈ C∞
c (GL2(R)) define

(X ∗ f)(g) :=
d

dt
f
(
exp(−tX)g

)∣∣
t=0

, (f ∗X)(g) :=
d

dt
f
(
g exp(−tX)

)∣∣
t=0

.

If, in particular, f ∈ H1 then also f ∗X ∈ H1 and X ∗ f ∈ H1.

Proposition 3.2.3. Let π : HR → GL(E) be an admissible representation. We can associate
to π representations π̃ on U(gC), Z(GL2(R)) and O2(R) by putting

π̃ : U(gC) → GL(E) , π̃(X)
(
π(f)v

)
:= π(X ∗ f)v ,

π̃ : H → GL(E) , π̃(h)
(
π(f)v

)
:= π

(
λ(h)f

)
v for H =

{
O2(R)

Z
(
GL2(R)

)
and extending this definition linearly to arbitrary elements in E. The following formulae
hold for all X ∈ U(gC), f ∈ H1, h ∈ O2(R) or h ∈ Z(GL2(R))

π̃(X)π(f) = π(X ∗ f) , π(f)π(X) = π(f ∗X) ,

π̃
(
Ad(h)X

)
= π̃(h)π̃(X)π̃(h−1) .
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Proof. Cf. [41, § 5].

Remark 3.2.4. Note that the definition we just gave for the representation π̃ on the sub-
groups O2(R) and Z(GL2(R)) cannot be extended to a representation on the whole group
GL2(R). The reason is that for f ∈ H1 and an arbitrary g ∈ GL2(R), the function λ(g)f
is not necessarily in H1 because the left translation does not preserve left-O2(R)-finiteness.
If, however, g ∈ O2(R) or g ∈ Z(GL2(R)) then λ(g)f ∈ H1 and the above definition makes
sense.

As in the non-archimedean case, we want to give a complete list of admissible representations
of the local Hecke algebra. It is again useful to consider the space B(µ1, µ2), whose definition
resembles the non-archimedean situation and will be given now.

Let µ1, µ2 be characters of R∗. According to Example 2.1.4, they are necessarily of the form

µi(t) = |t|sisgn(t)mi for some si ∈ C and mi ∈ {0, 1} .

Let s := s1 − s2 and m := |m1 −m2|, so that

µ1µ
−1
2 (t) = |t|ssgn(t)m .

Define

B(µ1, µ2)

:=

{
φ : GL2(R) → C | right-SO2(R)-finite, φ

((
a b

0 d

)
g

)
= µ1(a)µ2(d)

∣∣∣a
d

∣∣∣ 12φ(g)

}
.

According to [41, § 5], the space B(µ1, µ2) is generated by the functions

φl

((
1 x

0 1

)(
a 0
0 d

)
r(θ)

)
:= µ1(a)µ2(d)

∣∣∣a
d

∣∣∣ 12 e−ilθ where l ≡ m mod 2 .

Theorem 3.2.5. The representation

ρ(µ1, µ2) : HR → GL
(
B(µ1, µ2)

)
,

(
ρ(µ1, µ2)f

)
(φ)(g) :=

∫
GL2(R)

φ(gh)f(h) dh

is admissible.

(i) If µ1µ
−1
2 (t) is not of the form tpsgn(t) for some 0 6= p ∈ Z then ρ(µ1, µ2) is irreducible.

It will be denoted by π(µ1, µ2) and will be called a representation of the principal series.

(ii) If µ1µ
−1
2 (t) = tpsgn(t) for p ∈ Z, p > 0 then B(µ1, µ2) contains exactly one proper

invariant subspace Bs(µ1, µ2). This subspace is infinite-dimensional. The quotient
space Bf (µ1, µ2) := B(µ1, µ2)/Bs(µ1, µ2) is of finite dimension.
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(iii) If µ1µ
−1
2 (t) = tpsgn(t) for p ∈ Z, p < 0 then B(µ1, µ2) contains exactly one proper

invariant subspace Bf (µ1, µ2). This subspace is of finite dimension. The quotient space
Bs(µ1, µ2) := B(µ1, µ2)/Bf (µ1, µ2) is infinite-dimensional.

(iv) The above is a complete list of the irreducible admissible representations of HR.

In the cases (ii) and (iii), we denote any representation ρ(µ1, µ2) : HR → GL
(
Bs(µ1, µ2)

)
by σ(µ1, µ2) and call it a special representation. Similarly, any representation of the form
ρ(µ1, µ2) : HR → GL

(
Bf (µ1, µ2)

)
will be denoted by π(µ1, µ2). The only equivalences between

these representations are

π(µ1, µ2) ∼ π(µ2, µ1) ,

σ(µ1, µ2) ∼ σ(µ2, µ1) ∼ σ(µ1 sgn, µ2 sgn) ∼ (µ2 sgn, µ1 sgn) .

Proof. See [41, Thm. 5.11] and [32, § 2.3].

The proof of the previous Classification Theorem makes use of the representations ρ̃(µ1, µ2)
on U(gC), Z(GL2(R)) and O2(R) that are associated to ρ(µ1, µ2) via the construction in
Proposition 3.2.3. Although we will not explain the proof in detail it is worth noting in
which way certain elements of U(gC), Z(GL2(R)) and O2(R) act.

Lemma 3.2.6. As earlier, define elements H,L,R,∆ in U(gC) by

H :=

(
1 0
0 −1

)
, L :=

(
0 0
1 0

)
, R :=

(
0 1
0 0

)

and the Casimir (or Laplace) operator by

∆ := −1
4
H2 − 1

2
RL− 1

2
LR .

Then (
ρ(µ1, µ2)∆

)
φ = −s

2 − 1
4

φ for all φ ∈ B(µ1, µ2) .

Proof. See [41, Lemma 5.6].

Lemma 3.2.7. Let ρ̃(µ1, µ2) be the representation of H = Z
(
GL2(R)

)
or H = O2(R)

associated to the representation ρ(µ1, µ2) of HR. Then(
ρ̃(µ1, µ2)(h)

)
φ = ρ(h)φ for all h ∈ H and φ ∈ B(µ1, µ2) ,

where ρ denotes the usual right regular representation of GL2(R).



50 Chapter 3. The action of the Hecke algebra on automorphic forms

Proof. For the sake of clarity, we write ρµ and ρ̃µ instead of ρ(µ1, µ2) and ρ̃(µ1, µ2). By
part (i) of Definition 3.2.2 it is sufficient to verify the formula for an element of the form
ρµ(f)φ where f ∈ H1, φ ∈ B(µ1, µ2). For every h ∈ H,

ρ̃µ(h)
(
ρµ(f)φ

)
(g) =

(
ρµ

(
λ(h)f

)
φ
)
(g) =

∫
GL2(R)

φ(gk)
(
λ(h)f

)
(k) dk

=
∫

GL2(R)

φ(ghk)f(k) dk =
(
ρµ(f)φ

)
(gh) .

Hence ρ̃µ(h)φ = ρ(h)φ for all h ∈ H and φ ∈ B(µ1, µ2).

In the light of the previous lemma, we sometimes refer to ρ(µ1, µ2) as the right regular
representation of HR.

3.3 The global Hecke algebra

The aim of this chapter, which we will approach in the next section, is to examine the
behaviour of the space of Hilbert automorphic forms under admissible representations of
the global Hecke algebra H. However, we hardly need to refer to the global object H itself
because it is essentially the collection of the local data so that all proofs can and will be
carried out locally. Mainly for the sake of completeness, this section provides the basic
definitions of the global Hecke algebra and its representations.

Definition 3.3.1 (Global Hecke algebra for GL2(AF)). Let F be a totally real number
field, v a place of F ,

Kv :=

{
O2(R) if v is real,

GL2(ov) if v is non-archimedean,

and 1Kv
the characteristic function of Kv. The algebra

H :=
〈
⊗v fv | fv ∈ Hv , and fv = 1Kv

for almost all v
〉

is called the global Hecke algebra for GL2(AF ).

Definition 3.3.2 (Admissible representations of H). A representation π : H → GL(E)
is called admissible if the following conditions are satisfied:

(i) For any x ∈ E, there exist finitely many fi ∈ H′ and xi ∈ E such that x =
∑

i π(fi)xi.
Here H′ is a certain subalgebra of H the precise definition of which can be found in
[41, § 9].
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(ii) For any elementary idempotent ξ, the space π(ξ)E is finite-dimensional.

(iii) For all x ∈ E, the map

ξv0Hv0ξv0 → π(ξ)E , fv0 7→ π
(
fv0 ⊗

⊗
v 6=v0

ξv

)
x (where v0 | ∞ is fixed)

is continuous. Here, ξ =
⊗

v ξv where each ξv is an elementary idempotent, almost all
of which are equal to 1Kv

.

The reader is referred to [41, § 9] for an extensive discussion of admissible representations of
H. For our purposes it is not relevant to know the exact wording of the definition. It suffices
to be aware of the connection between the global and the local admissible representations,
which is the content of the following proposition.

Proposition 3.3.3. For all places v of F , let there be given an admissible representation
πv : Hv → GL(Ev) such that for almost all v, the restriction of πv to Kv contains the
identity representation exactly once. For every v, choose an element ev ∈ Ev that is fixed
under πv(Kv). Let

E := 〈⊗vxv | xv ∈ Ev where xv = ev for almost every v〉 .

Then
π := ⊗vπv : H → GL(E) ,

(
π(⊗vfv)

)
(⊗vxv) := ⊗v

(
πv(fv)xv

)
defines an admissible representation of H. Conversely, every irreducible admissible repre-
sentation of H can be obtained in this way.

Proof. See [41, Prop. 9.1].

3.4 Representation of the Hecke algebra on the space

of Hilbert automorphic forms

To simplify matters we assume from now on that the level n is square-free. Further, we
consider only weight vectors k satisfying kv ≥ 2 for all v | ∞.

In this section we would like to use our knowledge of the Hecke algebra H, in particular
the Classification Theorems 3.1.7 and 3.2.5 for the irreducible admissible representations of
the local Hecke algebras, to examine the space H0

k

(
K0(d, n), 1

)
. Unfortunately, this space is

not invariant under the action of H, so that we cannot immediately apply the results of the
previous sections. Instead, we recall from Corollary 2.2.14 the decomposition

H0
k

(
K0(d, n), 1

)
=
⊕

ω

H0
k

(
K0(d, n), 1, ω

)



52 Chapter 3. The action of the Hecke algebra on automorphic forms

where all ω∞ = sgnk and every ωp is unramified. Each H0
k

(
K0(d, n), 1, ω

)
is a subspace of

the larger space A0(ω) of all cusp forms with central character ω (cf. Definition 2.2.3). The
Hecke algebra H now operates on each A0(ω), which is stated in the following proposition.

Proposition 3.4.1. The Hecke algebra H acts on A0(ω). Under this action, A0(ω) decom-
poses into a direct sum of irreducible subspaces each occurring with multiplicity at most one.
More precisely, we have

A0(ω) =
⊕

π

V eω,π
ω,π where eω,π ∈ {0, 1}

and where the sum runs over all irreducible admissible representations π of H.

Proof. Cf. [41, Prop. 10.9 and Prop. 11.1.1].

Consequently,
H0

k

(
K0(d, n), 1

)
⊆
⊕

ω

⊕
π

V eω,π
ω,π . (3.1)

It will turn out that the properties (H.1)–(H.6), which we introduced in Definition 2.2.9 in
order to define Hilbert automorphic forms, are restrictive enough to imply that the projection
of H0

k

(
K0(d, n), 1

)
onto certain of the V eω,π

ω,π is 0, so that these spaces do not contribute to
the direct sum in (3.1). The aim of this section is to investigate which of the V eω,π

ω,π can be
omitted so that equation (3.1) still holds true.

To this end, take a function f ∈ H0
k

(
K0(d, n), 1

)
and write it in the form

f =
∑

fω,π where 0 6= fω,π ∈ Vω,π

according to the decomposition in equation (3.1).

First, we fix an archimedean place v and consider the v-th component of H, which is isomor-
phic to HR. By Theorem 3.2.5, any irreducible admissible representation of HR is a quotient
or a subrepresentation of ρ(µ1, µ2) : HR → GL

(
B(µ1, µ2)

)
. Recall that the space B(µ1, µ2)

is the span of the functions

φl

((
1 x

0 1

)(
a 0
0 d

)
r(θ)

)
:= µ1(a)µ2(d)

∣∣∣a
d

∣∣∣ 12 e−ilθ where l ≡ m mod 2 ,

where the characters µ1, µ2 are given by

µi(t) = |t|sisgn(t)mi for some si ∈ C,mi ∈ {0, 1}

and m, s are defined by

m := |m1 −m2| , s := s1 − s2 .
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Let us investigate the action of the Laplace operator on the space B(µ1, µ2). According to
Lemma 3.2.6, it is given by

∆vφ = −s
2 − 1
4

φ for all φ ∈ B(µ1, µ2) .

Thus

∆vfω,π = −s
2 − 1
4

fω,π

if Vω,π is a quotient or subrepresentation of B(µ1, µ2) with µ1µ
−1
2 = | · |ssgnm. On the other

hand, we have by definition of H0
k

(
K0(d, n), 1

)
∆vf = −kv

2

(
kv

2
− 1
)

f .

These two actions of ∆v are compatible if and only if the parameter s, which depends on
the pair (ω, π), satisfies

kv

2

(
kv

2
− 1
)

=
s2 − 1

4
, hence s2 = (kv − 1)2 (3.2)

for all (ω, π) for which fω,π 6= 0. Property (H.6) thus restricts the set of Vω,π that we need
to consider.

Next, we examine the consequences of condition (H.1). Consider a scalar matrix

zv :=

(
zv 0
0 zv

)
∈ Z(GL2(R)) .

Each basis element φl and hence every φ ∈ B(µ1, µ2) satisfies

φ (zvg) = µ1(zv)µ2(zv)φ(g) = |zv|s1+s2sgn(z)m1+m2φ(g) for all g ∈ GL2(R) .

On H0
k

(
K0(d, n), 1

)
, however, the action of a scalar matrix at an archimedean place is given

by multiplication with sgnkv because all relevant größencharacters ω satisfy ω∞ = sgnk. As
before, we are only interested in those representations for which both actions agree. If we
consider the case zv > 0 we immediately obtain the condition

s1 + s2 = 0 . (3.3)

Similarly, if zv < 0 we get m1 +m2 ≡ kv mod 2, and hence

m ≡ kv mod 2 . (3.4)

To finish the discussion of the archimedean places, we note that no further restrictions
on π arise from condition (H.3). It tells us that the rotation matrices r(θv) act on
H0

k

(
K0(d, n), 1, ω

)
by multiplication by e−ikvθv . On B(µ1, µ2), however,

φl(gr(θv)) = e−ilθvφl(g) .
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So the action of r(θv) on H0
k

(
K0(d, n), 1

)
is compatible with ρ(µ1, µ2) if φkv

∈ B(µ1, µ2).
This is the case if kv ≡ m mod 2, which results in the same condition as (3.4).

At the non-archimedean places we do not know that πp is equivalent to a quotient or sub-
representation of ρ(µ1, µ2). A priori there is also the possibility that it is absolutely cuspidal
(see Theorem 3.1.7). We will however show that this case never occurs if fω,π 6= 0.

To this end, recall that every function in H0
k

(
K0(d, n), 1

)
is invariant under right translation

with elements in the groupK0(d, n). Therefore, we only need to consider such representations
π for which πp contains

(
K0(d, n)

)
p
-invariant vectors. But by Lemma 3.1.9 this implies that

πp cannot be absolutely cuspidal.

Now that we have proved that πp is indeed equivalent to a quotient or subrepresentation of
ρ(µ1, µ2), we can continue in a similar fashion as in the archimedean situation.

Let φ ∈ B(µ1, µ2) and consider

k :=

(
a 0
0 d

)
∈
(
K0(d, n)

)
p

where a, d ∈ o∗p .

Let g ∈ Z
(
GL2(Fp)

)
. Then

φ(gk) = φ

((
a 0
0 d

)
g

)
= µ1(a)µ2(d)

∣∣∣a
d

∣∣∣ 12
p
φ(g) = µ1(a)µ2(d)φ(g)

since |a|p = |d|p = 1. On the other hand we know by (H.3) that f(gk) = f(g) for all
f ∈ H0

k

(
K0(d, n), 1

)
. Hence, µ1 and µ2 must both be trivial on o∗p.

We summarize this discussion in the following lemma, the statement of which can also be
found in [65, Eq. (6.1) and (6.2)].

Lemma 3.4.2. Let 0 6= f ∈ H0
k

(
K0(d, n), 1

)
. In a decomposition f =

∑
fω,π where each

fω,π ∈ Vω,π as before, we have fω,π = 0 unless π satisfies the following conditions:

(i) Each archimedean component πv is equivalent to a special representation σ(µ1, µ2) with
characters µ1 = | · |

kv−1
2 and µ2 = | · |−

kv−1
2 sgnkv .

(ii) Each non-archimedean component πp is of the form πp = π(µ1, µ2) or πp = σ(µ1, µ2)
for some unramified characters µ1, µ2.

Proof. Let π be an admissible irreducible representation for which fω,π 6= 0.

(i) By the Classification Theorem 3.2.5 we know that each archimedean component πv is
equivalent to either a special representation σ(µ1, µ2) or a π(µ1, µ2) where the char-
acters µ1, µ2 satisfy µ1µ

−1
2 (t) = |t|ssgnm(t) = tssgns+m(t). But the conditions (3.2),
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(3.3) and (3.4), that we have just established, imply

s1 = ±kv − 1
2

, s2 = ∓kv − 1
2

, s−m ≡ (kv − 1)− kv ≡ 1 mod 2 .

Hence µ1µ
−1
2 (t) = tssgn. All that is left to show is that πv is infinite-dimensional.

Suppose not. Then πv = π(µ1, µ2). According to [31, Ch. VII, § 5.2] (cf. also [29,
Remark 4.7]) such a πv cannot correspond to a unitary representation of GL2(R)
because |s1 − s2| = kv − 1 is an integer ≥ 1. But this is a contradiction because we
know that the right regular representation of GL2(R) on the space of square-integrable
functions, in which A0(ω) is contained, is unitary (cf. also Proposition 2.2.4).

(ii) We saw that πp is not absolutely cuspidal, so it is either one-dimensional or equivalent
to a π(µ1, µ2) or to a σ(µ1, µ2). We also saw that in these cases the characters must
be trivial on o∗p, i. e. unramified. So again it remains to rule out the one-dimensional
case. Let us suppose dimπp = 1. Then GL2(Fp) acts on f by

ρ(g)f = (χ ◦ det)(g)f

(cf. Theorem 3.1.7). In particular, f is SL2(Fp)-invariant on the right. Consider the
function

φg : AF → C , x 7→ f

((
1 x

0 1

)
g

)
.

For all g ∈ GL2(Fp) ↪→ GL2(AF ) and x ∈ Fp,

φg(x) =
(
ρ(g)f

)(( 1 x

0 1

))
= χ(det(g))f

((
1 x

0 1

))
= χ(det(g))f(I)

(I the (2 × 2)-identity matrix). So φg is constant on Fp and hence equals its 0-th
Fourier coefficient, which is 0 for almost all g since f is a cusp form (cf. Remark 2.2.7).
Hence f must also be 0, which is a contradiction to our general assumption.

Definition 3.4.3. Suppose that n is a square-free integral ideal in F . Then

U(n) ⊆ H0
k

(
K0(d, n), 1

)
is defined to be the subspace of all f =

∑
fω,π such that fω,π = 0 unless π satisfies the

following conditions:

(i) Each archimedean component πv is equivalent to a special representation σ(µ1, µ2)
with characters µ1 = | · |

kv−1
2 and µ2 = | · |−

kv−1
2 sgnkv .

(ii) Each non-archimedean component πp is of the form πp = π(µ1, µ2) or πp = σ(µ1, µ2)
for some unramified characters µ1, µ2.
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(iii) If p | n then πp is a special representation.

Remark 3.4.4. What really distinguishes the elements lying in U(n) from those lying in
H0

k

(
K0(d, n), 1

)
r U(n) is condition (iii). Conditions (i) and (ii) are only mentioned for the

sake of completeness. They are always fulfilled as we have just proved.

Let us briefly explain the role that condition (iii) plays so that it may become clearer why it
has been introduced. Up to now we have examined the representations that are connected
to an arbitrary cusp form f ∈ H0

k

(
K0(d, n), 1

)
. We did not pay any attention to the question

in which way any additional properties of f might affect the nature of these representations.

However, from classical theory we know that it often proves useful to divide the space of all
cusp forms of level n into two distinct classes: The first one contains the oldforms, which
are either cusp forms with respect to some “lower” level m properly dividing n or certain
translates thereof. It is well known (cf. for example [1]) that these oldforms form a subspace
of the space of all cusp forms of level n. Its orthocomplement is spanned by the newforms,
which—by construction—do not come from forms of “lower” level.

In terms of representation theory a newform in H0
k

(
K0(d, n), 1

)
is a function f which is

invariant under right translation by elements in K0(d, n) but not by elements in any K0(d,m)
where m | n is a proper divisor of n.

Let us momentarily denote by Vp the space of all f ∈ H0
k

(
K0(d, n), 1

)
viewed as functions

on the p-th component alone. A theorem of Casselman (see [10, Thm. 1]) then states that
for every p <∞ there is a minimal rp ∈ Z such that the fixed space

V
K0(dp,prp )
p :=

{
f ∈ Vp | πp(k)f = f for all k ∈ K0(dp, p

rp)
}

is non-empty, and in this case dimC V
K0(dp,pr)
p = 1. Moreover, the minimal rp is equal to 0

if πp = π(µ1, µ2) for some unramified characters µ1, µ2, and rp = 1 if πp = σ(µ1, µ2) with
unramified µ1, µ2 (cf. [49, Thm. 3.5]).

So f is a newform if and only if it belongs to the minimal non-empty fixed space for every
p < ∞. For p - n this is always true because in this case f is invariant under K0(dp, 1), so

that f lies in V K0(dp,p0)
p , which then must necessarily be the minimal non-empty fixed space.

For p | n we know that f is right-invariant under K0(dp, p). So it is a newform if and only
if rp = 1 for all p | n, which leads to the condition that πp be a special representation if
p | n. So the purpose of condition (iii) of the previous definition is to single out the space of
newforms in H0

k

(
K0(d, n), 1

)
.

For a further discussion of this topic see [49, § 3 and § 4] and [29, Thm. 4.23 and § 5B].

In view of the previous remark the following proposition can be understood as a represen-
tation theoretic version of [1, Thm. 5]. (Cf. also [22, IV § 1]).
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Proposition 3.4.5. Assume that n is square-free. For every prime ideal p | n let $p ∈ op

be a uniformizing element. Then

H0
k

(
K0(d, n), 1

)
=
⊕
m|n

⊕
a|nm−1

ρ

((
1 0
0 αa

))
U(m)

where αa =
∏

p|a$p ∈ A∗
F .

Proof. In [65, § 6.3] a similar result is shown for H0
k

(
K0(1, n), 1

)
and subspaces Ũ(n) hereof

that are define by the same set of conditions as we used in Definition 3.4.3. As K0(1, n) and
K0(d, n) are conjugate in the following way

K0(d, n) =

(
1 0
0 δ

)
K0(1, n)

(
1 0
0 δ

)−1

,

where δ is an adelic generator of d, we see that

f ∈ H0
k

(
K0(1, n), 1

)
⇐⇒ ρ

((
1 0
0 δ

))
f ∈ H0

k

(
K0(d, n), 1

)
.

So the claimed decomposition follows directly from the above-mentioned result in [65, § 6.3].
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Chapter 4

Harmonic homogeneous

polynomials

We saw in Section 1.3 that homogeneous harmonic polynomials come naturally into play
when we construct theta series that are modular forms of weight ≥ 2, and these polyno-
mials are non-constant if the weight is > 2. Unfortunately many authors prefer to restrict
themselves to the technically easier case of weight 2, so that literature on the general case
is rather limited.

We find it therefore advisable to explain the role of the harmonic polynomials in more detail
and devote the entire chapter to this subject. For the sake of completeness we also choose
to include Section 4.1, although it is not essential for the rest of this thesis. It discusses
different inner products on the space of harmonic polynomials and the role of the Gegenbauer
polynomials. Detailed explanations of these topics are somewhat neglected in the literature
on modular forms, although they are used by a number of authors (for example [25], [4],
[39]) when treating polynomial-valued automorphic forms and related subjects.

The action of the Hamiltonians on the space of homogeneous polynomials is explained in
Section 4.2, and finally we discuss the connection between harmonic polynomials and adelic
automorphic forms.

4.1 Gegenbauer polynomials

Denote by Homν [X1, . . . , Xm] the complex space of homogeneous polynomials in m variables
of total degree ν. Recall that a polynomial P ∈ Homν [X1, . . . , Xm] is said to be harmonic
if it is annihilated by the Laplace operator, i. e.

∆P = 0 .

59
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The complex subspace of all harmonic polynomials in Homν [X1, . . . , Xm] will be denoted
by Harmν [X1, . . . , Xm].

Theorem 4.1.1. A homogeneous polynomial P ∈ Homν [X1, . . . , Xm] is harmonic if and
only if it is either

(i) constant, if ν = 0,

(ii) or linear, if ν = 1,

(iii) or a linear combination of terms of the form (ztX)ν where each z ∈ Cm satisfies
ztz = 0.

Proof. Cf. [40, Theorem 9.1].

Theorem 4.1.2. For ν ≥ 2, the space of homogeneous harmonic polynomials of degree ν
in m indeterminates has dimension

dimC
(
Harmν [X1, . . . , Xm]

)
=
(
ν +m− 1
m− 1

)
−
(
ν +m− 3
m− 1

)
=

(ν +m− 3)!
ν!(m− 2)!

(m+ 2ν − 2)

over the complex field. In particular, for m = 4,

dimC
(
Harmν [X1, . . . , X4]

)
= (ν + 1)2 .

Proof. This dimension formula can be proved by a simple counting argument (see for example
[35, Satz 32] or [40, Corollary 9.2]).

Lemma 4.1.3. Let V be a subspace of Homν [X1, . . . , Xm], and let {P1, . . . , Pd} be an or-
thonormal basis of V with respect to some inner product 〈〈 · , · 〉〉 on V . Then the polynomial
Kν(x, y) defined by

Kν(x, y) :=
d∑

i=1

Pi(x)Pi(y) ,

is in fact independent of the choice of the orthonormal basis. Moreover, when considered as
a polynomial in x alone, Kν(x, y) is the unique element in V that satisfies the reproducing
kernel condition

P (y) =
〈〈
P, Kν( · , y)

〉〉
for all P ∈ V and all y = (y1, . . . , ym) ∈ Cm .

Proof. Most of the assertions are evident, and we will only show the independence of the
choice of basis. Let {Q1, . . . , Qd} be another orthonormal basis of V , then we can find a
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unitary matrix T = (tij) ∈ SUd(C) such that Pi =
∑
tijQj for all i = 1, . . . , d. Using this

and the fact that T
t
T = Id, a simple calculation shows that

∑
Pi(x)Pi(y) =

∑
Qi(x)Qi(y).

For the uniqueness of the kernel function see for example [58, Ch. II, § 1, Thm. 1.1].

We will now make a specific choice for the inner product 〈〈 · , · 〉〉. For j = (j1, . . . , jm) ∈ Nm
0 ,

we use the multi-index notation

|j| := j1 + . . .+ jm , j! := j1! · . . . · jm! , c(j) :=
|j|!
j!

, Xj := Xj1
1 · . . . ·Xjm

m ,

so that any homogeneous polynomial P ∈ Homν [X1, . . . , Xm] can uniquely be expressed as

P =
∑
|j|=ν

c(j)ajXj for suitable coefficients aj ∈ C .

We endow the space Homν [X1, . . . , Xm] with the inner product 〈〈 · , · 〉〉 defined by

〈〈P,Q〉〉 :=
∑
|j|=ν

c(j)ajbj for P =
∑
|j|=ν

c(j)ajXj , Q =
∑
|j|=ν

c(j)bjXj .

Our next aim is to find a more explicit description of the reproducing kernel Kν(x, y) on
the space Harmν [X1, . . . , Xm] of harmonic polynomials. But before we tackle this problem,
let us add a few comments on the inner product 〈〈 · , · 〉〉 that we are using. A possibly more
natural inner product to consider would be

〈P,Q〉 :=
∫

Sm−1
P (x)Q(x) dx ,

where Sm−1 is the unit sphere in Rm. It has the advantage of being obviously rotation
invariant, i. e.

〈P ◦ ρ, Q ◦ ρ〉 = 〈P,Q〉 for all P,Q ∈ Harmν [X1, . . . , Xm] and ρ ∈ SO(m) ,

but the disadvantage that it is somewhat inconvenient to use when it comes to explicit
computations. Therefore we prefer to use the inner product 〈〈 · , · 〉〉, which is defined solely
in terms of the coefficients of P and Q. To justify our choice, we point out that 〈 · , · 〉 and
〈〈 · , · 〉〉 in fact differ only by a constant factor, as will be shown in the next Proposition.

Proposition 4.1.4. For P,Q ∈ Harmν [X1, . . . , Xm],

〈P,Q〉 =
ν! Γ

(
m
2 + 1

)
2ν Γ

(
m
2 + ν + 1

)vol(Sm−1) 〈〈P,Q〉〉 .

Proof. The proof makes use of the identities (cf. [40, § 9.2])∫
Sm−1

∆P (x) dx = ν(ν +m)
∫

Sm−1
P (x) dx for all P ∈ Homν [X1, . . . , Xm]
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and

∆(PQ) = 2
m∑

i=1

∂P

∂Xi

∂Q

∂Xi
for all P,Q ∈ Harmν [X1, . . . , Xm] .

Applying these identities to PQ ∈ Hom2ν [X1, . . . , Xm], we get

ν(2ν +m)
∫

Sm−1
P (x)Q(x) dx =

∫
Sm−1

m∑
i=1

∂P (x)
∂Xi

∂Q(x)
∂Xi

dx =
m∑

i=1

∫
Sm−1

∂P (x)
∂Xi

∂Q(x)
∂Xi

dx ,

where both ∂P
∂Xi

and ∂Q
∂Xi

are in Harmν−1[X1, . . . , Xm]. We repeat this process ν times and
get

ν∏
q=1

q(2q +m)
∫

Sm−1
P (x)Q(x) dx =

∫
Sm−1

m∑
i1,...,iν=1

∂νP (x)
∂Xi1 . . . ∂Xiν

∂νQ(x)
∂Xi1 . . . ∂Xiν

dx .

If we write P and Q in the form P =
∑

|j|=ν c(j)ajX
j and Q =

∑
|j|=ν c(j)bjX

j then the
derivatives are

∂νP

∂Xi1 . . . ∂Xiν

= j1! · . . . · jm! c(j)aj = ν! aj where jk := #{l | il = k}

and similarly for Q. As there are exactly c(j) tuples (i1, . . . , iν) ∈ {1, . . . ,m}ν leading to
the same derivative, we finally obtain∫

Sm−1
P (x)Q(x) dx =

(
ν∏

q=1

q(2q +m)

)−1 ∫
Sm−1

∑
|j|=ν

c(j) (ν!)2 ajbj dx

=

(
ν!2ν

ν∏
q=1

(m
2

+ q
))−1

· vol(Sm−1) (ν!)2
∑
|j|=ν

c(j) ajbj

=
ν! Γ

(
m
2 + 1

)
2ν Γ

(
m
2 + ν + 1

)vol(Sm−1)
∑
|j|=ν

c(j) ajbj .

Now we are ready to find an explicit description of the reproducing kernel Kν(x, y) on the
space Harmν [X1, . . . , Xm] with respect to 〈〈 · , · 〉〉. We follow the argumentation in [35, § 5]
and [62, Proof of Theorem 3].

Lemma 4.1.5. Let x, y ∈ Rm. Then Kν(x, y) is SO(m)-invariant, i. e.

Kν(ρ(x), ρ(y)) = Kν(x, y) for all ρ ∈ SO(m) ,

and must therefore be of the form

Kν(x, y) = (|x||y|)νC

(
〈x, y〉
|x||y|

)
for some C ∈ C[X] , (4.1)

where 〈·, ·〉 and | · | are the usual euclidian inner product and norm on Rm.
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Proof. Let {P1, . . . , Pd} be an orthonormal basis of Harmν [X1, . . . , Xm] with respect to
〈〈 · , · 〉〉, and let ρ ∈ SO(m). Note that Harmν [X1, . . . , Xm] is invariant under ρ so that
{P1 ◦ ρ, . . . , Pd ◦ ρ} is again a basis of this space. As a consequence of Proposition 4.1.4, we
know that 〈〈 · , · 〉〉 is rotation invariant. Therefore we have

〈〈Pi ◦ ρ, Pj ◦ ρ〉〉 = 〈〈Pi, Pj〉〉 = δij for all 1 ≤ i, j ≤ d ,

so {P1 ◦ ρ, . . . , Pd ◦ ρ} is in fact an orthonormal basis. But Kν(x, y) is independent of the
choice of basis, as we have seen in Lemma 4.1.3. So it follows that

Kν(ρ(x), ρ(y)) =
d∑

i=1

(Pi ◦ ρ)(x)(Pi ◦ ρ)(y) =
d∑

i=1

Pi(x)Pi(y) = Kν(x, y) .

Now let x, y, z, w ∈ Sm−1 be elements on the unit sphere. If 〈x, y〉 = 〈z, w〉 then there exists
a rotation ρ such that ρ(x) = z and ρ(y) = w, and consequently Kν(x, y) = Kν(z, w). In
other words, Kν(x, y), when restricted to the unit sphere, depends only on 〈x, y〉. But since
Kν(x, y) is of homogeneous degree ν in x and y, respectively, we can write

Kν(x, y) = |x|ν |y|νKν

(
x

|x|
,
y

|y|

)
for arbitrary x, y ∈ Rm ,

and we see that on the whole, Kν(x, y) depends only on |x|, |y| and 〈x, y〉. But as it must
be a homogeneous polynomial of degree ν, that only leaves the possibility

Kν(x, y) =
b ν

2 c∑
i=0

ai〈x, y〉ν−2i|x|2i|y|2i = (|x||y|)ν

b ν
2 c∑

i=0

ai

(
〈x, y〉
|x||y|

)ν−2i

for suitable coefficients ai ∈ C.

As mentioned in Lemma 4.1.3, Kν(x, y) is itself a harmonic polynomial in x. As a matter of
fact, the property ∆Kν(x, y) = 0 is restrictive enough to make an explicit description of the
polynomial C in equation (4.1) possible. Indeed, writing Kν(x, y) as in equation (4.1) and
taking derivatives with respect to x, leads after a lengthy but straightforward calculation to

∆Kν(x, y) = |x|ν−2|y|ν
((

1− 〈x, y〉2

|x|2|y|2

)
C ′′
(
〈x, y〉
|x||y|

)
+ (1−m)

〈x, y〉
|x||y|

C ′
(
〈x, y〉
|x||y|

)
+ ν(ν +m− 2)C

(
〈x, y〉
|x||y|

))
.

The polynomial C must therefore satisfy

(1− u2)C ′′(u) + (1−m)uC ′(u) + ν(ν +m− 2)C(u) = 0 . (4.2)

This differential equation is sometimes called Gegenbauer differential equation and its poly-
nomial solutions are well-known.

Theorem 4.1.6. For m > 1 and an integer ν ≥ 0, the Gegenbauer differential equation (4.2)
has a polynomial solution, which is unique up to a constant.
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Proof. See [69, Theorem 4.2.2].

Definition 4.1.7 (Gegenbauer polynomial). We call

C(λ)
ν (x) =

b ν
2 c∑

q=0

(−1)q Γ(ν − q + λ)
Γ(λ)Γ(q + 1)Γ(ν − 2q + 1)

(2x)ν−2q

Gegenbauer (or ultraspherical) polynomial of degree ν and parameter λ.

Example 4.1.8. The first Gegenbauer polynomials are

C
(λ)
0 (x) = 1 ,

C
(λ)
1 (x) = 2λx ,

C
(λ)
2 (x) = 2λ(λ+ 1)x2 − λ ,

C
(λ)
3 (x) =

4
3
λ(λ+ 1)(λ+ 2)x3 − 2λ(λ+ 1)x .

Proposition 4.1.9. Let m > 1 and λ = m
2 − 1.

(i) The Gegenbauer polynomial C(λ)
ν is a solution of the differential equation (4.2).

(ii) The reproducing kernel Kν( · , y) on Harmν [X1, . . . , Xm] with respect to 〈〈 · , · 〉〉 is given
by

Kν(x, y) =
1
d0

(|x||y|)νC(λ)
ν

(
〈x, y〉
|x||y|

)

=
1
d0

∑
|j|=ν

( b ν
2 c∑

q=0

dq|y|2q
∑
|k|=q

c(k)c(j− 2k)yj−2k

)
xj

where

dq = (−1)q2ν−2q Γ
(
ν − q + m

2 − 1
)

Γ
(

m
2 − 1

)
Γ(q + 1)Γ(ν − 2q + 1)

∈ Q .

Proof. The first part can be found in any book on Gegenbauer polynomials, for example
[69, Equation (4.7.5)]. For the second part observe that

(|x||y|)νC(λ)
ν

(
〈x, y〉
|x||y|

)
=

b ν
2 c∑

q=0

dq〈x, y〉ν−2q(|x||y|)2q

and
〈x, y〉ν−2q =

∑
|j|=ν−2q

c(j)xjyj and (|x||y|)2q = |y|2q
∑
|k|=q

c(k)x2k ,

which proves the second equality in (ii). By the uniqueness of the reproducing kernel, by
Lemma 4.1.5 and Theorem 4.1.6, it is then clear that the reproducing kernel for the space
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Harmν [X1, . . . , Xm] with respect to 〈〈 · , · 〉〉must be a scalar multiple of (|x||y|)νC
(λ)
ν

(
〈x,y〉
|x||y|

)
.

In order to show that the scalar is d−1
0 , it suffices to check the reproducing kernel property

for an arbitrarily chosen 0 6= P ∈ Harmν [X1, . . . , Xm]. In the light of Theorem 4.1.1 we take

P (x) =
( m∑

i=1

uixi

)ν

=
∑
[j|=ν

c(j)ujxj where
m∑

i=1

u2
i = 0 if ν ≥ 2 .

So we have for all y ∈ Rm

〈〈
P, Kν( · , y)

〉〉
=

1
d0

∑
|j|=ν

uj

( b ν
2 c∑

q=0

dq|y|2q
∑
|k|=q

c(k)c(j− 2k)yj−2k

)

=
1
d0

b ν
2 c∑

q=0

dq|y|2q
∑
|j|=ν

∑
|k|=q

u2kc(k)c(j− 2k)uj−2kyj−2k

=
1
d0

b ν
2 c∑

q=0

dq|y|2q
∑
|k|=q

u2kc(k)
∑

|i|=ν−2q

c(i)uiyi

=
1
d0

b ν
2 c∑

q=0

dq|y|2q
( m∑

i=1

u2
i

)q( m∑
i=1

uiyi

)ν−2q

.

If ν = 0, 1 then there is no term for q > 0. If ν ≥ 2 then we have
∑m

i=1 u
2
i = 0 by assumption,

so again, all terms for q > 0 vanish, and we are left with

〈〈
P, Kν( · , y)

〉〉
=

1
d0
d0

( m∑
i=1

uiyi

)ν

= P (y) .

Finally, it is easily verified that dq ∈ Q.

4.2 The action of the Hamiltonians on homogeneous

polynomials

In this section we restrict our attention to the case m = 2. The inner product on Homν [X,Y ]
then simplifies to

〈〈P,Q〉〉 :=
ν∑

j=0

(
ν

j

)
ajbj for P =

ν∑
j=0

(
ν

j

)
ajX

ν−jY j , Q =
ν∑

j=0

(
ν

j

)
bjX

ν−jY j .

Let H denote the Hamilton quaternion algebra, in which we fix the canonical basis {1, i, j, k}
where i2 = j2 = −1, ij = −ji = k. Then H can be identified with{(

z w

−w z

) ∣∣∣ z, w ∈ C

}
via x 7→ X1(x)
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where for x = x01 + x1i + x2j + x3k,

z := x0 + ix1, w := x2 + ix3 ∈ C and X1(x) :=

(
z w

−w z

)
.

The group H1 of norm-1 quaternions then corresponds to SU2(C), i. e. the subgroup of
GL2(C) consisting of those matrices X1(x) that satisfy

det
(
X1(x)

)
= zz + ww = x2

0 + x2
1 + x2

2 + x2
3 = 1 .

Definition 4.2.1 (Symmetric power representation). Define the ν-th symmetric power
representation σν : H∗ → GL(Homν [X,Y ]) by(

σν(x)P
)
(X,Y ) := P

(
(X,Y )X1(x)

)
= P

(
zX − wY, wX + zY

)
.

Define another representation Λν : H∗ → GL(Homν [X,Y ]) by

Λν(x)P := nrd(x)−
ν
2 σν(x)P .

Lemma 4.2.2. Denote by χσν
the character of the representation σν . Then for all x ∈ H∗

and λ ∈ R∗,

σν(λx) = λνσν(x) and χσν
(λx) = λνχσν

(x) .

Proof. This is due to the fact that the polynomials on which σν(x) acts are homogeneous.

Lemma 4.2.3. The irreducible finite-dimensional representations of H∗ are precisely the
representations of the form

H∗ → GL
(
Homν [X,Y ]

)
, x 7→

(
nrd(x)r · σν(x)

)
for some ν ∈ N0, r ∈ C. In particular, σν and Λν are irreducible.

Proof. Via x 7→
(
nrd(x)

1
2 , nrd(x)−

1
2 x
)
, we get an isomorphism H∗ ∼= R>0 × SU2(C). By

Example 2.1.4 we know that the action of t ∈ R>0 is multiplication by tr for some r ∈ C. In
particular, any subspace is invariant under R>0. Therefore, the irreducible finite-dimensional
representations of H∗ remain irreducible when restricted to SU2(C). But these are exactly
the symmetric power representations σν (see [43, Ch. II, §§ 1,2]). Hence, every irreducible
finite-dimensional representation of H∗ is of the form

x 7→ nrd(x)
r
2 · σν

(
nrd(x)−

1
2 x
)

= nrd(x)
r−ν

2 · σν(x)

as claimed.
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Proposition 4.2.4. For all P,Q ∈ Homν [X,Y ],〈〈
σν(x)P, σν(x)Q

〉〉
= 〈〈P,Q〉〉 for all x ∈ H1 ,〈〈

Λν(x)P, Λν(x)Q
〉〉

= 〈〈P,Q〉〉 for all x ∈ H∗ .

Proof. As mentioned above, X1(x) ∈ SU2(C) for any x ∈ H1. Therefore, σν(x) acts by a
unitary transformation of the variables X,Y . From the discussion in the previous section, we
can derive that 〈〈 · , · 〉〉 is invariant under such unitary transformations (or see for example
[57, Thm. 2.12] for a direct proof). For arbitrary x ∈ H∗, not necessarily of norm 1, we
immediately obtain

〈〈P,Q〉〉 =
〈〈
σν

(
nrd(x)−

1
2x
)
P, σν

(
nrd(x)−

1
2x
)
Q
〉〉

=
〈〈

Λν(x)P, Λν(x)Q
〉〉

by Lemma 4.2.2.

In Homν [X,Y ], consider the canonical basis

Pi := Xν−iY i for i = 0, . . . , ν .

Clearly, the image of Xν−iY i under the action of σν(x) for x ∈ H1 is(
σν(x)Pi

)
(X,Y ) = (zX − wY )ν−i(wX + zY )i .

The matrix of σν(x) with respect to the basis {Xν−iY i} will be denoted by Xν(x). Note
that for ν = 1 this definition of X1(x) coincides with the definition given at the beginning
of this section.

Example 4.2.5. Let x = x01+x1i+x2j+x3k ∈ H∗. If we put z = x0+ix1 and w = x2+ix3

as before then

X1(x) =

(
z w

−w z

)
,

X2(x) =

 z2 zw w2

−2zw zz − ww 2zw
w2 −zw z2

 ,

X3(x) =


z3 z2w zw2 w3

−3z2w z2z − 2zww 2zzw − w2w 3zw2

3zw2 ww2 − 2zzw zz2 − 2zww 3z2w

w3 zw2 −z2w z3

 .

Lemma 4.2.6. As polynomials in the four variables x0, . . . , x3, the entries of the matrices
Xν(x) are harmonic polynomials of degree ν.
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Proof. See [22, II § 6, Prop. 6].

Corollary 4.2.7. Let {Q1, . . . , Qν+1} be an orthonormal basis of Homν [X,Y ] with respect
to 〈〈 · , · 〉〉. Then the matrix coefficients

Qij(x) :=
〈〈
σν(x)Qi, Qj

〉〉
constitute an orthogonal basis of Harmν [X0, . . . , X3] with respect to 〈 · , · 〉. More precisely,∫

H1
Qij(x)Qkl(x) dx =

1
dimσν

δikδjl .

Proof. The previous lemma shows that the Qij are elements of Harmν [X0, . . . , X3]. By
Proposition 4.2.4, 〈〈 · , · 〉〉 is invariant under σν |H1 . We may therefore apply the Schur
orthogonality (see Theorem 2.1.5) to obtain∫

H1

〈〈
σν(x)Qi, Qj

〉〉〈〈
σν(x)Qk, Ql

〉〉
dx =

1
dimσν

〈〈Qi, Qk〉〉〈〈Qj , Ql〉〉 =
1

dimσν
· δikδjl ,

which proves that the Qij are orthogonal and in particular linearly independent. Finally
observe that the span of the polynomials Qij is indeed all of Harmν [X0, . . . , X3] as both
spaces have dimension (ν + 1)2 (see Theorem 4.1.2).

Corollary 4.2.8. The character χσν
of σν can be expressed in terms of the polynomials Qij

as

χσν
(x) =

ν+1∑
i=1

Qii(x) for all x ∈ H∗ .

Proof. With respect to the orthonormal basis {Q1, . . . , Qν+1}, the operator σν(x) has the
matrix

(
〈〈σν(x)Qj , Qi〉〉

)ν+1

i,j=1
. Its trace is

χσν (x) =
ν+1∑
i=1

〈〈σν(x)Qi, Qi〉〉 =
ν+1∑
i=1

Qii(x) .

4.3 Harmonic polynomials and automorphic forms

As earlier, let A be a definite quaternion algebra over F and O an Eichler order in A.

For each archimedean place v of F , fix a non-negative integer νv and collect all of them in
a vector ν = (νv1 , . . . , νvn

). In order to deal with all archimedean places at the same time
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we use the following obvious notation for any j ∈ Nn
0 :

0 ≤ j ≤ ν :⇐⇒ 0 ≤ jv ≤ νv for all v | ∞ .

Put

Homν [X,Y ] :=
⊗
v|∞

Homνv
[X,Y ] and Harmν [X0, . . . , X3] :=

⊗
v|∞

Harmνv
[X0, . . . , X3] .

Then
dimC Homν [X,Y ] =

∏
v|∞

(νv + 1) .

Since the local quaternion algebra Av is isomorphic to the Hamiltonians H, we may let A∗v
act on the polynomial space Homνv [X,Y ] by Λνv , which is the representation of H∗ that
we introduced in the previous section. By collecting these local representations we obtain a
representation Λν of A∗∞ given by

Λν :=
⊗
v|∞

Λνv
=
⊗
v|∞

nrd( · )−
νv

2 σνv
=: nrd( · )−

ν
2 σν ,

which acts on Homν [X,Y ]. Similarly we write

Xν( · ) :=
(
xij( · )

)ν
i,j=0

:= ⊗v|∞Xνv
( · ) = ⊗v|∞

(
xivjv

( · )
)νv

iv,jv=0

where each Xνv
( · ) is the matrix defined in Section 4.2.

Consider the space V of functions φ : A∗A → C satisfying

(i) φ(γgk) = φ(g) for all γ ∈ A∗F , g ∈ A∗A, k ∈
∏

p<∞ O∗
p,

(ii) the right regular representation ρ of A∗∞ on Eφ := 〈ρ(g)φ | g ∈ A∗∞〉 is Λν -isotypic,
i. e. it is equivalent to a direct sum

⊕
Λν .

Lemma 4.3.1. Suppose that there is an ε ∈ o∗F such that sgn(ε)ν =
∏

v|∞ sgn(εv)νv = −1.
Then

V = {0} .

Proof. Assume that ε ∈ o∗F satisfies sgn(ε)ν = −1. Let φ ∈ V . Since ε ∈ Z(A∗F ) and
εp ∈ O∗

p for all p <∞, we can use property (i) to see that

φ(g) = φ(εg) = φ(gε∞εf ) = φ(gε∞) =
(
ρ(ε∞)φ

)
(g) for all g ∈ A∗A .

Now apply property (ii) and continue

φ(g) =
(
Λν(ε∞)φ

)
(g) = nrd(ε∞)−

ν
2
(
σν(ε∞)φ

)
(g) =

(∏
v|∞

(ε2v)−
νv
2 ενv

v

)
φ(g) = sgn(ε)νφ(g) ,

where we made use of Lemma 4.2.2. From this equation and our assumption on ε it is clear
that φ = 0.



70 Chapter 4. Harmonic homogeneous polynomials

In the light of this lemma we assume for the rest of this chapter that

sgn(ε)ν = 1 for all ε ∈ o∗F .

By definition of the space V there is an isomorphism τ , depending on φ, such that the
diagram

Eφ
τ //

ρ(g)

��

⊕
Homν [X,Y ]

Λν(g)

��
Eφ

τ // ⊕Homν [X,Y ]

commutes for all g ∈ A∗∞. For h ∈ A∗A,

Lh :
⊕

Homν [X,Y ] → C , P 7→
(
τ−1(P )

)
(h)

is a linear map.

Lemma 4.3.2. Fix φ ∈ V and let P0 = τ(φ). For h ∈ A∗A define a map

φ̃(h) : A∞ → C , g 7→

{
Lh

(
Λν(g)P0

)
if g 6= 0 ,

0 if g = 0 .

Then

(i) nrd( · ) ν
2 φ̃(h) is a harmonic polynomial in Harmν [X0, . . . , X3].

(ii) φ(hg) = φ̃(h)(g) for all g ∈ A∗∞.

(iii) φ(hz) = φ(h) for all z ∈ F+
∞ ⊆ Z(A∗∞).

Proof. (i) By definition, the restriction φ̃(h)|A∗∞ is a matrix coefficient of Λν . Therefore
nrd( · ) ν

2 φ̃(h), when restricted to A∗∞, is a matrix coefficient of σν and hence a harmonic
polynomial by Lemma 4.2.6.

(ii) We use the commutativity of the diagram above to get

φ(hg) =
(
ρ(g)φ

)
(h) =

(
(τ−1◦Λν(g)◦τ)(φ)

)
(h) =

(
τ−1(Λν(g)P0)

)
(h) = Lh

(
Λν(g)P0

)
.

(iii) For z ∈ F+
∞, we have z = nrd(z)

1
2 . Hence

φ(hz) = nrd(z)−
ν
2

(
nrd(z)

ν
2 φ̃(h)(z)

)
= nrd

(
nrd(z)−

1
2 z
) ν

2
φ̃(h)

(
nrd(z)−

1
2 z
)

= φ̃(h)(1) = φ(h)

where we used the homogenity of nrd( · ) ν
2 φ̃(h), which was shown in (i).
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Lemma 4.3.3. Let 〈〈 · , · 〉〉 be a Λν-invariant inner product on
⊕

Homν [X,Y ] and {Qi} an
orthonormal basis with respect to 〈〈 · , · 〉〉. For h ∈ A∗A and g ∈ A∗∞,

φ(hg) =
〈〈

Λν(g)P0,
∑

i

Lh(Qi)Qi

〉〉
= nrd(g)−

ν
2

∑
i

∑
m

〈〈P0, Qm〉〉Lh(Qi)Qmi(g)

where Qmi(g) = 〈〈σν(g)Qm, Qi〉〉 as in the previous section.

Proof. By the previous lemma, φ(hg) = φ̃(h)(g) = Lh

(
Λν(g)P0

)
. But for any polynomial

P ∈
⊕

Homν [X,Y ] and in particular for P = Λν(g)P0, we can easily verify

Lh(P ) = Lh

(∑
i

〈〈P,Qi〉〉Qi

)
=
∑

i

〈〈P,Qi〉〉Lh(Qi) =
〈〈
P,
∑

i

Lh(Qi)Qi

〉〉
,

which proves the first equality. For the second equality observe that〈〈
Λν(g)P0,

∑
i

Lh(Qi)Qi

〉〉
=
∑

i

Lh(Qi)〈〈Λν(g)P0, Qi〉〉

=
∑

i

Lh(Qi)
〈〈

Λν(g)
(∑

m

〈〈P0, Qm〉〉Qm

)
, Qi

〉〉
=
∑

i

∑
m

〈〈P0, Qm〉〉Lh(Qi)
〈〈

Λν(g)Qm, Qi

〉〉
and that Λν(g) = nrd(g)−

ν
2 σν(g).

We use the previous Lemmas to compute an integral that we will encounter in Section 5.3.

Lemma 4.3.4. Let h ∈ A∗A and z ∈ A∗∞. Then∫
A1
∞

φ(hk)χσν
(zk) dk =

nrd(z)
ν
2

dimσν
φ(hz) =

1
dimσν

Φ(h)(z)

where Φ(h) = nrd( · ) ν
2
(
ρ( · )φ

)
(h) ∈ Harmν [X0, . . . , X3].

Proof. As before, let {Qi} be an orthonormal basis of
⊕

Homν [X,Y ]. Use Corollary 4.2.8
to rewrite the character as

χσν (zk) =
∑

p

〈〈σν(zk)Qp, Qp〉〉 =
∑

p

〈〈
σν(k)

(
σν(z)Qp

)
, Qp

〉〉
.

Since nrd(k) = 1, the inner product is invariant under σν(k). Hence

χσν
(zk) =

∑
p

〈〈
σν(z)Qp, σν(k

−1
)Qp

〉〉
=
∑

p

〈〈
σν(k)Qp, σν(z)Qp

〉〉
.
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Here σν(z)Qp is again a homogeneous polynomial, which can be expressed in terms of the
basis {Qi} as

σν(z)Qp =
∑

q

α(p)
q Qq for some α(p)

q ∈ C .

Then
χσν

(zk) =
∑

p

〈〈
σν(k)Qp,

∑
q

α
(p)
q Qq

〉〉
=
∑

p

∑
q

α(p)
q Qpq(k) .

Together with the results of Lemma 4.3.3 we get∫
A1
∞

φ(hk)χσν (zk) dk =
∫

A1
∞

∑
i

∑
m

〈〈P0, Qm〉〉Lh(Qi)Qmi(k)
∑

p

∑
q

α(p)
q Qpq(k) dk

=
∑

i

∑
m

∑
p

∑
q

α(p)
q 〈〈P0, Qm〉〉Lh(Qi)

∫
A1
∞

Qmi(k)Qpq(k) dk

=
1

dimσν

∑
i

∑
m

α
(m)
i 〈〈P0, Qm〉〉Lh(Qi)

by Corollary 4.2.7, in which the orthogonality of the {Qij} was proven. We continue∫
A1
∞

φ(hk)χσν (zk) dk =
1

dimσν

∑
m

〈〈P0, Qm〉〉Lh

(∑
i

α
(m)
i Qi

)

=
1

dimσν

∑
m

〈〈P0, Qm〉〉Lh

(
σν(z)Qm

)
.

Now use the Λν -invariance of 〈〈 · , · 〉〉 to obtain∫
A1
∞

φ(hk)χσν
(zk) dk =

nrd(z)
ν
2

dimσν

∑
m

〈〈Λν(z)P0, Λν(z)Qm〉〉Lh

(
Λν(z)Qm

)
=

nrd(z)
ν
2

dimσν

〈〈
Λν(z)P0,

∑
m

Lh

(
Λν(z)Qm

)
Λν(z)Qm

〉〉
=

nrd(z)
ν
2

dimσν
φ(hz) .

The last equality can be shown with the same argument that was used in Lemma 4.3.3
because {Λν(z)Qm} is again an orthonormal basis with respect to 〈〈 · , · 〉〉. Finally, apply (i)
and (ii) of Lemma 4.3.2 to get the desired result.

The rest of this chapter is devoted to the study of a certain subspace V0 of V , which will be
used in our discussion in Sections 5.2 and 5.3. To this end define the space

W :=
〈〈〈

Λν( · )P, Q
〉〉 ∣∣ P,Q ∈ Homν [X,Y ]

〉
,

which is generated by all matrix coefficients of Λν . On W consider the left regular repre-
sentation λ : A∗∞ → GL(W ).
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Lemma 4.3.5. Let {Pi | i = 0, . . . ,ν} be a basis of Homν [X,Y ]. The space W decomposes
into irreducible λ-invariant subspaces

Wj :=
〈〈〈

Λν( · )Pj, Q
〉〉 ∣∣ Q ∈ Homν [X,Y ]

〉
for j = 0, . . . ,ν .

The action of λ on each Wj is equivalent to Λν . In particular, if

Pi := Xν−iY i := ⊗v|∞X
νv−ivY iv for i = 0, . . . ,ν

then the irreducible subspaces of W are of the form

Wj =
〈
nrd( · )− ν

2 xij( · ) | i = 0, . . . ,ν
〉

for j = 0, . . . ,ν

where Xν( · ) =
(
xij( · )

)
is the matrix defined above.

Proof. On elements of the form 〈〈Λν( · )P,Q〉〉 with homogeneous polynomials P,Q, the ac-
tion of λ is given by(

λ(g)〈〈Λν( · )P,Q〉〉
)
(h) = 〈〈Λν(g−1h)P,Q〉〉 = 〈〈Λν(h)P, Λν(g)Q〉〉 .

Thus we see that each Wj is λ-invariant. Moreover, in Lemma 4.2.3 we saw that Λν is
irreducible on Homν [X,Y ]. Therefore, the spaces Wj are irreducible as well. Now consider
the basis consisting of the polynomials Pi := Xν−iY i for i = 0, . . . ,ν. Then {P0, . . . , Pν} is
orthogonal with respect to 〈〈 · , · 〉〉 and

Λν( · )Pj = nrd( · )− ν
2 σν( · )Pj = nrd( · )− ν

2

ν∑
i=0

xij( · )Pi .

Hence
〈〈Λν( · )Pj, Pi〉〉 = κ · nrd( · )− ν

2 xij( · )

for some constant κ ∈ C which takes into account that the Pi are not normalized. In this
particular situation

Wj =
〈
nrd( · )− ν

2 xij( · ) | i = 0, . . . ,ν
〉

as claimed.

Now recall from (1.1) the decomposition

A∗A =
H∐

j=1

A∗F yjO
∗
A (where y∞j = 1)

where H denotes the ideal class number of O-right ideals. For i = 1, . . . ,H let Oi be the
Eichler order of A that is uniquely determined by the local data

(Oi)p =
(
yiOy

−1
i

)
p

for all p <∞ .
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Lemma 4.3.6. As before, assume that sgn(ε)ν = 1 for all ε ∈ o∗F and let Pi := Xν−iY i for
i = 0, . . . ,ν. Fix an index j ∈ {0, . . . ,ν}. Define a subspace of V by

V0 :=
{
φ ∈ V |

(
ρ( · )φ

)
(g) ∈Wj for all g ∈ A∗A

}
.

Then the following assertions hold:

(i) For i ∈ {1, . . . ,H} and m ∈ {0, . . . ,ν} the elements

Qim(x) :=
∑

r∈O∗i /o∗F

〈〈
Λν(rx)Pj, Pm

〉〉
for x ∈ A∗∞

are O∗
i -invariant on the left.

(ii) For fixed i the set {Qim | m = 0, . . . ,ν} is a set of generators of

W
(O∗i )
j := {Q ∈Wj | Q is O∗

i -invariant on the left} .

(iii) The functions φim for i = 1, . . . ,H, m = 0, . . . ,ν defined by

φim(g) :=

{
Qim(m∞) if g = ayim ∈ A∗F yiO

∗
A ,

0 else

generate V0.

Proof. (i) The quotient O∗
i /o

∗
F is finite (see [20, § 1, Satz 2]) and

Λν(ε) = nrd(ε)
−ν
2 σν(ε) = (ε2)−

ν
2 ενσν(1) = sgn(ε)ν = 1 for all ε ∈ o∗F

by assumption. So Qim is indeed well-defined. Moreover, left multiplication of the
argument x by an element in O∗

i only permutes the summands, so Qim is clearly
left-O∗

i -invariant.

(ii) Let Q ∈ W (O∗i )
j . Then Q = 〈〈Λν( · )Pj, P 〉〉 for some P ∈ Homν [X,Y ], and because of

the O∗
i -invariance we have Q(x) = Q(rx) for all r ∈ O∗

i , i. e.

〈〈Λν( · )Pj, P 〉〉 =
〈〈

Λν( · )Pj, Λν(r−1)P
〉〉

for all r ∈ O∗
i .

Summing both sides over a complete set of representatives for O∗
i /o

∗
F yields

〈〈Λν( · )Pj, P 〉〉 =
1

[O∗
i : o∗F ]

∑
r∈O∗i /o∗F

〈〈
Λν( · )Pj, Λν(r−1)P

〉〉
.

So if P =
∑ν

m=0 αmPm for some αm ∈ C then

Q = 〈〈Λν( · )Pj, P 〉〉 =
ν∑

m=0

αm

[O∗
i : o∗F ]

Qim ,

so Q lies indeed in the span of the Qim.
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(iii) First note that the φim are well-defined. Indeed, if g = ayim = ãyim̃ then it is
easily checked that m̃∞ = ã−1am∞ where ã−1a ∈ A∗F ∩ yiO

∗
Ay

−1
i = O∗

i . Since every
Qim is O∗

i -invariant on the left we see that φim(g) does not depend on the particular
factorization of g. Next we need to verify that φim ∈ V . By construction we have
φim(γgk) = φim(g) for all γ ∈ A∗F , g ∈ A∗A and k ∈

∏
p<∞ O∗

p. Let h ∈ A∗∞. If
g = ayim as before then gh = ayi(mh) with mh ∈ O∗

A. Hence(
ρ(h)φim

)
(g) = Qim

(
(mh)∞

)
=

∑
r∈O∗i /o∗F

〈〈
Λν(rm)

(
Λν(h)Pj

)
, Pm

〉〉
.

So ρ(h) operates as Pj 7→ Λν(h)Pj, which means that the action of A∗∞ is Λν -isotypic.
Consequently, φim ∈ V . Similarly,(

ρ( · )φim

)
(g) =

∑
r∈O∗i /o∗F

〈〈
Λν( · )Pj, Λν

(
(rm)−1

)
Pm

〉〉
∈Wj ,

which shows that φim ∈ V0.

So all that is left to show is that the functions φim span all of V0. To this end consider
an arbitrary φ ∈ V0. Then

(
ρ( · )φ

)
(h) ∈ Wj for all h ∈ A∗A by definition of V0. More

precisely, we have
(
ρ( · )φ

)
(yi) ∈W

(O∗i )
j , which can be seen by the following argument:

If ε ∈ O∗
i = A∗F ∩ yiO

∗
Ay

−1
i , then there exists an m ∈ O∗

A such that ε = yimy
−1
i . In

particular, e∞ = m∞ since we always assume that y∞i = 1. Now we use the A∗F - and∏
p O∗

p-invariance of φ to get for x ∈ A∗∞(
ρ(x)φ

)
(yi) = φ(yix) = φ(εyix) = φ(yimx) = φ(yim

∞xmf )

= φ
(
yim

∞xmf ((mf )−1εf )
)

= φ(yiε
∞xεf ) = φ(yiεx) =

(
ρ(εx)φ

)
(yi) ,

which shows that
(
ρ( · )φ

)
(yi) is indeed O∗

i -invariant on the left and hence lies in

W
(O∗i )
j . It follows by part (ii) that

(
ρ( · )φ

)
(yi) =

ν∑
m=0

αimQim for some αim ∈ C .

If g = ayim as before then we use the A∗F - and
∏

p<∞ O∗
p-invariance of φ again to

obtain

φ(g) = φ(yim
∞) =

ν∑
m=0

αimQim(m∞) =
ν∑

m=0

αimφim(g) .

So φ is indeed a linear combination of the φim and the proof is complete.

Corollary 4.3.7. Fix an index j ∈ {0, . . . ,ν}. To φim as defined above and to g ∈ A∗A
associate a harmonic polynomial Φim(g) := nrd( · ) ν

2
(
ρ( · )φim

)
(g) ∈ Harmν [X0, . . . , X3] as

in Lemma 4.3.4. Then

Φim(g) =


〈〈
σν( · )Pj,

∑
r∈O∗i /o∗F

Λν

(
(rm)−1

)
Pm

〉〉
if g = ayim ∈ A∗F yiO

∗
A ,

0 else .
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In particular, Φim(g) is a linear combination of the entries in the j-th column of Xν( · ).

Proof. This is just a summary of the previous discussion.



Chapter 5

Theta series as generators of the

space of Hilbert modular cusp

forms

We will now turn to our main task of constructing explicit sets of generators for each of the
spaces Sk

(
Γ0(cld, n), 1

)
, l = 1, . . . , h+ of Hilbert modular cusp forms. The key ingredient

will be a result of Shimizu (see Theorem 5.2.3 and [65, § 6.5, Thm. 2]), which provides a
set of generators of the space U(n) of adelic newforms (cf. Remark 3.4.4). Since we know
by Theorem 2.3.7 that there is a complete correspondence between classical and adelic cusp
forms, we may view Shimizu’s result as an answer to our problem. It has, however, the
drawback of being rather unexplicit.

Section 5.3 is therefore devoted to a detailed discussion and reformulation of Shimizu’s The-
orem by means of the correspondence 2.3.7. We will thus obtain an explicit set of generators
of the spaces Sk

(
Γ0(cld, n), 1

)
in terms of quaternionic theta series as were introduced in

Section 1.3.

We begin with a short section on the Weil representation, which will be needed in order to
state Shimizu’s Theorem.

5.1 The Weil representation

In this section only, we denote by F a local field, which will be either the p-adic field Fp or
the real field R.

Let A be a quaternion algebra over F and fix a non-trivial (additive) character of ψ of F .

77



78 Chapter 5. Theta series as generators of the space of Hilbert modular cusp forms

We denote by | · |F and | · |A the module of F and A, respectively, which is defined by the
equality |a|F dx = d(ax) for all a ∈ F and any additive Haar measure dx on F , and similarly
for A. For F = R or F = Fp, the module has the explicit form

|x|R = |x| , |x|Fp = Np−vp(x) and |a|A = |nrd(a)2|F for x ∈ F, a ∈ A

(cf. [78, I § 2, Cor. 3 of Thm. 3 and I § 4, Thm. 6]).

For a Schwartz-Bruhat function f ∈ S(A), we denote by f̂ the Fourier transform with
respect to the character ψ, that is

f̂(x) =
∫

A

f(y)ψ
(
tr(xy)

)
dy .

Definition 5.1.1 (Weil representation of SL2(F)). We define the local Weil represen-
tation Ω : SL2(F ) → GL(S(A)) by

Ω

((
a 0
0 a−1

))
f(x) = |a|1/2

A f(ax) ,

Ω

((
1 b

0 1

))
f(x) = ψ

(
b nrd(x)

)
f(x) ,

Ω

((
0 1
−1 0

))
f(x) = γf̂(x) where γ =

{
1 if A ∼= M2(F ) ,

−1 if A is a division algebra .

The Weil representation was first introduced in [77] in a more general context. Since then
it has proven to be a useful ingredient in the study of modular forms. However, we neither
assume that the reader is familiar with the Weil representation nor will we go into details
here. All that we need apart from the definition is the following lemma, which describes the
interaction of Ω with the right and left regular representation. For further properties of Ω
the reader is referred to [41, Prop. 1.3].

Lemma 5.1.2. Let s ∈ SL2(F ) and x ∈ A. Then

ρ(x)Ω(s) = Ω

((
nrd(x) 0

0 1

)
s

(
nrd(x)−1 0

0 1

))
ρ(x) .

In particular, ρ(x)Ω(s) = Ω(s)ρ(x) if nrd(x) = 1. Similarly,

λ(x)Ω(s) = Ω(s)λ(x) if nrd(x) = 1 .

Proof. See [41, Lemma 1.4] or [65, Lemma 1], but note the misprint in the latter.
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5.2 An explicit version of Shimizu’s Theorem

Let F be a totally real number field of degree n ≥ 2. As earlier we denote by d the different
of F . By [37, VIII § 63, Satz 176], there exists an element ζ ∈ F ∗ and an ideal b of F such
that

ζd = b2 .

By c1, . . . , ch+ we denote a complete set of representatives of the narrow ideal classes of F .
Further, let n be a square-free integral ideal of F , and let k = (k1, . . . , kn) ∈ Zn be a weight
vector such that ki > 2 for all i.

Our aim is to prove the following theorem:

Theorem 5.2.1.

(i) Suppose that the degree n = [F : Q] is even. Then the space Sk

(
Γ0(cld, n), 1

)
of Hilbert

modular cusp forms of weight k for the group

Γ0(cld, n) =

{(
a b

c d

)
∈

(
oF (cld)−1

ncld oF

) ∣∣∣ ad− bc ∈ o∗+F

}

with trivial character is generated by the set of all theta series of the form

Θ(z) =
∑

ν∈o∗+F /o2
F

ν
k−2

2

∑
a∈η−1adclb−1Iij

P (ηa) exp
(
2πiTr(νnrd(a)z)

)
where for each divisor m of n

• a runs through all divisors of nm−1,

• we choose a quaternion algebra A together with an Eichler order O of level
(D1, D2) such that m = D1D2,

• we put Iij := IiI
−1
j where I1, . . . , IH is a complete set of representatives of the

O-right ideal classes,

• of all pairs (i, j) ∈ {1, . . . ,H} we consider only those for which there exists an
η ∈ A∗F such that nrd(η−1adclb

−1Iij) = acl,

• and P runs through a set of at most
∏n

i=1(ki−1)2 harmonic polynomials of degree
k− 2 (a method of constructing suitable polynomials is described in Lemma 5.3.2
below).

(ii) If the degree n is odd then the construction in part (i) can be carried out except for
the divisor m = (1). The theta series that are obtained span a space U such that
Sk

(
Γ0(cld, n), 1

)
= Unew

1 ⊕U where Unew
1 is generated by the new forms of level 1 and

their right translates.
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Remark 5.2.2. In fact, we will only be able to prove this theorem by assuming the validity
of a statement that has not yet been shown in detail (see Conjecture 5.2.5 below). However,
we will defer any further comments on this gap until the end of this section. First it seems
advisable to sketch the idea of our proof so that we will be able to see where the nonproven
statement comes in.

In order to state Shimizu’s Theorem, which will be the main ingredient of the proof, we need
to introduce some additional notation. Let us fix some adelic generators of the different d

and of the ideal class representatives c1, . . . , ch+ . By this we mean elements

δ ∈ A∗
F defined by δ∞ = 1 and δpop = dp for all p <∞

and

tl ∈ A∗
F such that t∞l = 1 and tl,pop = cl,p for all p <∞ .

We use the element ζ, which was chosen above and satisfies ζd = b2, to make a specific
choice for the character ψ of AF /F , namely

ψ(x) = τ(ζx) ,

where τ is the standard character on AF /F as defined in Proposition 2.2.5. Then the
archimedean components of ψ are of the form

ψv(xv) = exp(2πiζvxv)

and ∏
v|∞

ψv(xv) =
∏
v|∞

exp(2πiζvxv) = exp
(
2πiTr(ζx)

)
.

The numbers ζv will be collected in an element u ∈ A∗
F such that

u∞ := (ζv)v|∞ and uf := 1 .

The conductor of ψ at the non-archimedean places is

cond(ψp) =
{
xp ∈ Fp | TrFp/Qp

(ζxp) ∈ Zp

}
= ζ−1d−1

p = b−2
p .

For every place p - D1, we fix an Eichler order Op of Ap. Define an ideal J in A by the
following local data

Jp = b−1
p Op for all p <∞ .

Then Jp is a two-sided Op-ideal of norm b−2
p = cond(ψp).

Denote by χk−2 := χσk−2
= (χkv−2)v|∞ the character of the (k− 2)-th symmetric power

representation σk−2 = (σkv−2)v|∞. Define a function M(x) =
∏

v Mv(xv)
∏

pMp(xp) on AA

by {
Mv(x) := exp

(
− 2π|uv|nrd(x)

)
χkv−2(x) for all v | ∞ ,

Mp(x) := 1Jp(x) for all p <∞ .
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In Lemma 4.3.6 we introduced the space V0 of finite dimension d, say, consisting of all
functions φ : A∗A → C satisfying

(i) φ(γgk) = φ(g) for all γ ∈ A∗F , g ∈ A∗A, k ∈
∏

p<∞ O∗
p,

(ii) the right regular representation ρ of A∗∞ on Eφ := 〈ρ(g)φ | g ∈ A∗∞〉 is Λk−2-isotypic,

(iii)
(
ρ( · )φ

)
(h) ∈

〈
nrd( · )− k−2

2 xij( · ) | i = 0, . . . ,k− 2
〉

for all h ∈ A∗A and an arbitrary
but fixed index j ∈ {0, . . . ,k− 2},

where Xk−2( · ) =
(
xij( · )

)
is the matrix defined in Section 4.2.

Finally, recall from Definition 3.4.3 that we used the representations of the global Hecke
algebra H to specify a certain subspace U(n) of the space H0

k

(
K0(d, n), 1

)
of adelic Hilbert

modular forms, which consists of the newforms of level n.

After these preparations, we are now ready to state Shimizu’s Theorem, which will be the
starting point for the proof of Theorem 5.2.1.

Theorem 5.2.3 (Shimizu, 1972). Let k > 2 and assume that A is a quaternion algebra
of square-free discriminant D1. Suppose that O is a maximal order of A. Then the space
U(D1) is generated by the functions

ρ

((
1 0
0 δ

))
θ( · ;φi, gj) : GL2(F )\GL2(AF ) −→ C for i, j = 1, . . . , d

that are given by

θ(s;φ, g) := dim(σk−2)|det(s)|AF

∫
A1

F \A1
A

φ(xhg)
∑

a∈AF

(
Ω(s1)M

)
(g−1axhg) dx . (5.1)

Here M is the function defined above, Ω is the Weil representation introduced in 5.1.1, σk−2

is the (k− 2)-th symmetric tensor representation introduced in 4.2.1, h ∈ A∗A is such that
nrd(h) = det(s)sgn(u), s1 ∈ SL2(AF ) is defined by

s1 :=

(
sgn(u) det(s)−1 0

0 1

)
s

(
sgn(u) 0

0 1

)
,

{φ1, . . . , φd} form a basis of the space V0, and the elements {g1, . . . , gd} in A∗A may be
arbitrarily chosen such that they satisfy det

(
φi(gj)

)
6= 0.

Proof. In [65, § 6, Thm. 2 and No. 11], Shimizu proves that the spaces

Ũ(n) := ρ

((
1 0
0 δ−1

))
U(n) ⊆ H0

k

(
K0(1, n), 1

)
are generated by the functions θ( · ;φi, gj). As we use K0(d, n) instead of K0(1, n) we need
to consider the right translates of the θ( · ;φi, gj) instead.
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Remark 5.2.4. Recall that an element in A∗
F is the reduced norm of some quaternion if

and only if it is totally positive. Hence we can only find an element h ∈ A∗A as claimed if
det(sv)sgn(uv) > 0 for all archimedean places v. Without loss of generality we may assume
that this is indeed the case. For by the Strong Approximation Theorem 2.3.1

det(s)sgn(u) ∈ A∗
F =

h+∐
j=1

tjF
∗(F+

∞ × ô∗F
)

where t∞j = 1 .

So if det(s)sgn(u) = tjµm∞m
f for some µ ∈ F ∗, m∞m

f ∈ F+
∞ × ô∗F then we replace s

by
(
µ−1 0
0 1

)
s. This does not change the value of the function θ( · ;φ, g), which is GL2(F )-

invariant on the left. For the so constructed element the positivity condition

det

((
µ−1 0
0 1

)
s

)
v

sgn(uv) > 0 for all v | ∞

is now satisfied.

The idea of the proof of Theorem 5.2.1 is now evident: A set of generators of the space
Sk

(
Γ0(cld, n), 1

)
of classical Hilbert cusp forms can be derived from a set of (adelic) gener-

ators of the space H0
k

(
K0(d, n), 1

)
using the correspondence

h+⊕
l=1

Sk

(
Γ0(cld, n), 1

) ∼= H0
k

(
K0(d, n), 1

)
,

which has been established in Theorem 2.3.7. These adelic generators may be constructed
by means of the decomposition

H0
k

(
K0(d, n), 1

)
=
⊕
m|n

⊕
a|nm−1

ρ

((
1 0
0 αa

))
U(m)

(Proposition 3.4.5) and Shimizu’s Theorem 5.2.3, which tells us how to obtain generators of
the spaces U(m).

Unfortunately, there is one crucial problem in this construction: Shimizu’s Theorem is
only applicable to U(m) if there exists a definite quaternion algebra over F of discriminant
m. However, it is a fundamental fact that the number of prime divisors of a square-free
discriminant of a definite quaternion algebra over F must have the same parity as the
degree of F , i. e.

#{p | p is a prime ideal and p | disc(A)} ≡ [F : Q] mod 2 if A is definite .

We saw that it is essential to be able to compute U(m) for all m dividing the level n.
Therefore we need a Shimizu-like theorem which allows us to construct U(m) in the cases
where the number of primes dividing m is not of the same parity as [F : Q].
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Conjecture 5.2.5. Shimizu’s Theorem does not only hold if O is a maximal order of A
but also if it is an Eichler order of level (D1, D2). In this case, the theorem yields a set of
generators of the space U(D1D2).

Remark 5.2.6. The choice of the order has influence on the function M , on the class
number H and on the space V0 and its dimension d.

Remark 5.2.7. We have good reason to believe that Conjecture 5.2.5 is true. Let us briefly
explain why:

It is possible to define the Hecke algebra H(A∗A) of a quaternion algebra A in a similar
manner as we did in Section 3.3 when we introduced the Hecke algebra H of GL2(AF ) (see
for example [65, § 1, no.8]). In order to do so, an order of A has to be fixed, which plays
the role of the compact subgroup. In Shimizu’s proof of Theorem 5.2.3 this order is always
assumed to be maximal.

One of the most essential steps in Shimizu’s proof is to show that to every irreducible
admissible representation of H(A∗A) one can define an irreducible admissible representation
of H such that each constituent of the action of H(A∗A) on the space of automorphic forms
for A∗A which is infinite-dimensional at all places v - D1 corresponds to a constituent of the
representation of H on the space A0(ω) of automorphic cusp forms (cf. also [41, Thm. 14.4]).
Now, in order to examine the irreducible constituents of a representation π of a group
G, say, the Selberg trace formula (see for example [30, Ch. 1, § 2, no.4]) often proves to
be a useful tool. This formula contains information about the characters of irreducible
subrepresentations of π, its specific form depending on the group G. Although the formula
can become rather complicated, one may hope that by a close and careful analysis one may
derive from it a classification of all irreducible constituents of π.

So what would be needed here in order to prove Conjecture 5.2.5 is a trace formula for H(A∗A)
that works even in the case of non-maximal Eichler orders. But such a formula exists, it
has been shown by Shimizu himself in an earlier work [64]. With the help of this trace
formula it should be possible to imitate the arguments in Shimizu’s proof and thus verify
Conjecture 5.2.5. However, since applications of the trace formula tend to become rather
technical and tedious, this task is beyond the scope of this thesis.

Remark 5.2.8. Note that even if the conjecture is true we cannot find generators for the
space U(1) if the degree n = [F : Q] is odd. Indeed, in this case there exists no definite
quaternion algebra of discriminant D1 = (1). So no matter which Eichler order we choose,
its level D1D2 will always be divisible by the non-trivial factor D1. With the methods
explained above, we will therefore only be able do compute the subspace

⊕
m|n

m6=(1)

⊕
a|nm−1

ρ

((
1 0
0 αa

))
U(m) ⊆ H0

k

(
K0(d, n), 1

)
.
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This is the content of part (ii) of Theorem 5.2.1.

Remark 5.2.9. But what if the conjecture turns out to be wrong? In this case we will not
obtain a set of generators of the whole space Sk

(
Γ0(cld, n), 1

)
because we can only construct

generators of those subspaces U(m) for which the number of prime divisors of m has the
same parity as n = [F : Q]. However, there are at least two facts that remain valid even if
Conjecture 5.2.5 is wrong:

• The theta series that we construct are cusp forms lying in the space Sk

(
Γ0(cld, n), 1

)
,

although they may only span a subspace.

• If n = (1) and n = [F : Q] is even then Theorem 5.2.1 is true. Indeed, in this case
we only need to consider the divisor m = (1) and hence only the space U(1), which
corresponds to a quaternion algebra over F of discriminant 1. Such an algebra exists
if (and only if) n is even.

In what follows we will assume that Conjecture 5.2.5 is true. The proof of Theorem 5.2.1 will
then follow the outline that we sketched above. Even though the idea of the proof is clear it
will turn out that many tedious computations are needed before we arrive at a description
of the generators of Sk

(
Γ0(cld, n), 1

)
, which is explicit enough for computational purposes.

We will therefore devote the entire following section to the proof.

5.3 Proof of Theorem 5.2.1

Assume that Conjecture 5.2.5 is true.

As earlier let d be the different of F , δ an adelic generator of d and

α := αa =
∏
p|a

$p ∈ A∗
F where p = $pop

for any square-free integral ideal a of F . By Proposition 3.4.5, Shimizu’s Theorem 5.2.3 and
Conjecture 5.2.5, there is a set of generators of H0

k

(
K0(d, n), 1

)
consisting of functions of

the form

ρ

((
1 0
0 δα

))
θ( · ;φ, g)

for certain ideals a, quaternion algebras of varying discriminant and Eichler orders of suit-
able level. The correspondence between classical and adelic automorphic forms, which we
stated in Proposition 2.3.4 and Theorem 2.3.7, then implies that for l = 1, . . . , h+ the space
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Sk

(
Γ0(cld, n), 1

)
is generated by the corresponding functions

z 7→ j(γ∞, i)k θ

((
1 0
0 δαtl

)
γ∞; φ, g

)
where γ∞ ∈ G+

∞ is such that γ∞i = z .

In the remainder of this section we will derive an explicit description of these functions and
thus prove Theorem 5.2.1.

As a first case let us consider the situation in which there exists a unit ε ∈ o∗F such that
sgn(ε)k = −1. Then Lemma 4.3.1 tells us that V0 ⊆ V = {0}. The basis {φ1, . . . , φd}
of V0, which is used to define the theta series in Shimizu’s Theorem, is therefore empty.
Consequently, U(m) = {0} for all ideals m and hence Sk

(
Γ0(cld, n), 1

)
= {0}.

We may therefore assume from now on that

sgn(ε)k = 1 for all ε ∈ o∗F .

We fix the quaternion algebra A of discriminant D1, an Eichler order O in A of level (D1, D2)
and the ideals a and cl under consideration.

Let us make a specific choice for γ∞ in order to facilitate the subsequent computations. Let
z ∈ Hn. If zv = av + ibv, let γ∞ ∈ G+

∞ be the matrix whose v-th component is

γv =

(
|ζv|1/2 0

0 |ζv|1/2

)(
b
1/2
v avb

−1/2
v

0 b
−1/2
v

)
∈ GL+

2 (R) ,

so that det γv = |ζv| and γ∞i = z. Then

j(γ∞, i)k =
∏
v|∞

|ζv|−
kv
2
(
|ζv|

1
2 b
− 1

2
v

)kv = Im(z)−
k
2 ,

and

s̃ :=

(
1 0
0 δαtl

)
γ∞ ∈ GL2(AF )

is the argument at which we need to evaluate θ( · ;φ, g). First, we have to find an element
h ∈ A∗A whose norm equals det(s̃)sgn(u). As explained in Remark 5.2.4, such an element
does not necessarily exist. But we saw that instead of s̃ we can take

s :=

(
ζ−1 0
0 1

)(
1 0
0 δαtl

)
γ∞ ∈ GL2(AF )

without altering the value of the theta function. Clearly,(
det(s)sgn(u)

)
v

= ζ−1
v |ζv|sgn(ζv) = 1 > 0 for all v | ∞ ,

so that we can find an h ∈ A∗A such that nrd(h) = det(s)sgn(u). For this choice of s the
factor |det(s)|AF

appearing in equation (5.1) becomes

|det(s)|AF
= |ζ−1|AF

∏
v|∞

|ζ|v
∏

p<∞
|δαtl|p

= 1 ·
∣∣NF

Q (ζ)
∣∣ ∏

p<∞
N (p)−vp(dacl) =

∣∣NF
Q (ζ)

∣∣N (dacl)−1 ,
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where N (q) = [oF : q] denotes the absolute norm of an integral ideal q. Let s1 ∈ SL2(AF )
be defined as in Theorem 5.2.3. Locally, s1 has the form

s1,v =

(
(|ζv|−1bv)1/2 0

0 (|ζv|−1bv)−1/2

)(
1 sgn(uv)avb

−1
v

0 1

)
for all v | ∞ ,

s1,p =

(
(αpδptl,p)−1 0

0 αpδptl,p

)
for all p <∞ .

Lemma 5.3.1. Let the notation be as above and define the abbreviation

e(x) := exp
(
2πiTr(x)

)
for x ∈ AF .

Then
Ω(s1)M =

(
Ω(s1)M

)∞(Ω(s1)M
)f

where (
Ω(s1)M

)∞(x) :=
∏
v|∞

(
Ω(s1,v)Mv

)
(xv) =

(
|ζ|−1Im(z)

) k
2 χk−2(x∞) e

(
nrd(x)z

)
and

(
Ω(s1)M

)f(x) :=
∏

p<∞

(
Ω(s1,p)Mp

)
(xp) =

N (adcl)2 if xp ∈ (adclb
−1O)p for all p <∞ ,

0 else .

Proof. Because of the particular shape of s1,v and s1,p we can compute the action of Ω
directly by the formulae given in Definition 5.1.1. For each archimedean place v | ∞ we
obtain

(
Ω(s1,v)Mv

)
(xv) =

∣∣ζ−1
v bv

∣∣Ω(( 1 sgn(uv)avb
−1
v

0 1

))
Mv

(
(|ζv|−1bv)1/2xv

)
=
∣∣ζ−1

v bv
∣∣ψ(sgn(uv)avb

−1
v nrd((|ζv|−1bv)1/2xv)

)
Mv

(
(|ζv|−1bv)1/2xv

)
=
∣∣ζ−1

v bv
∣∣χkv−2

(
(|ζv|−1bv)1/2xv

)
exp

(
2πiavnrd(xv)− 2πbvnrd(xv)

)
=
∣∣ζ−1

v bv
∣∣ ∣∣ζ−1

v bv
∣∣ kv−2

2 χkv−2(xv) exp
(
2πinrd(xv)(av + ibv)

)
=
∣∣ζ−1

v bv
∣∣ kv

2 χkv−2(xv) exp
(
2πinrd(xv)zv

)
,

from which the assertion for the archimedean part follows. In the non-archimedean case,
apply Definition 5.1.1 again to obtain(

Ω(s1)M
)f (x) =

∏
p<∞

∣∣nrd(αpδptl,p)
∣∣−1

p
Mp

(
(αpδptl,p)−1xp

)
.

Here ∏
p<∞

∣∣nrd(αpδptl,p)
∣∣−1

p
=
∏

p<∞

∣∣αpδptl,p
∣∣−2

p
=
∏

p<∞
N (p)2vp(αpδptl,p) = N (adcl)2
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and ∏
p<∞

Mp

(
(αpδptl,p)−1xp

)
=

 1 (αpδptl,p)−1xp ∈ Jp for all p <∞ ,

0 else .

Since Jp = b−1
p Op, the assertion follows.

Now recall from (1.1) the decomposition

A∗A =
H∐

j=1

A∗F yjO
∗
A (where y∞j = 1)

where H denotes the ideal class number of O-right ideals. As earlier let Oi be the order of
A that is uniquely determined by the local data

(Oi)p = yiOpy
−1
i for all p <∞ .

It is again an Eichler order. We saw in Lemma 4.3.6 that the space V0 is generated by the
functions

φim(g) =


∑

r∈O∗i /o∗F

〈〈
Λk−2(rm∞)Pj, Pm

〉〉
if g = ayim ∈ A∗F yiO

∗
A ,

0 else

for i = 1, . . . ,H, m = 0, . . . ,k− 2, for some fixed index j and Pi := Xk−2−iY i.

Lemma 5.3.2. The harmonic polynomial Φim(h) = nrd( · ) k−2
2
(
ρ( · )φim

)
(h) associated to

φim satisfies

Φim(yk) =


〈〈
σk−2( · )Pj,

∑
r∈O∗i /o∗F

Λk−2(r)Pm

〉〉
if i = k ,

0 if i 6= k .

For each i = 1, . . . ,H choose among the polynomials {Φim(yi) | m = 0, . . . ,k− 2} a set
{Φi,1(yi), . . . ,Φi,di

(yi)} that is maximally linearly independent. Further choose elements
m

(i)
1 , . . . ,m

(i)
di
∈ A1

∞ such that

det


Φi,1(yi)(m

(i)
1 ) . . . Φi,1(yi)(m

(i)
di

)
...

...
Φi,di

(yi)(m
(i)
1 ) . . . Φi,di

(yi)(m
(i)
di

)

 6= 0 . (5.2)

Put

{g1, . . . , gd} := {y1m(1)
1 , . . . , y1m

(1)
d1
, . . . , yHm

(H)
1 , . . . , yHm

(H)
dH

} ,
{φ1, . . . , φd} := {φ1,1, . . . , φ1,d1 , . . . , φH,1, . . . , φH,dH

} ,
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where d =
∑H

i=1 di = dimV0. Then

det
(
φi(gj)

)
6= 0 .

Further
gpOp = yipOp for all p <∞ .

Proof. The specific form of the Φim(yk) follows from Corollary 4.3.7. Now note that it is
indeed possible to find m

(i)
1 , . . . ,m

(i)
di
∈ A1

∞ with the desired property because the polyno-
mials Φi,1(yi), . . . ,Φi,di(yi) are homogeneous and linearly independent for fixed i. If the
φi’s and the gj ’s are ordered in the above fashion then the matrix

(
φi(gj)

)
i,j

becomes the
(d× d)-block matrix

(
φi(gj)

)d
i,j=1

=


B1 0

. . .

0 BH


where the (di × di)-blocks Bi are

Bi =


nrd(m(i)

1 )−
k−2
2 Φi,1(yi)(m

(i)
1 ) . . . nrd(m(i)

di
)−

k−2
2 Φi,1(yi)(m

(i)
di

)
...

...
nrd(m(i)

1 )−
k−2
2 Φi,di(yi)(m

(i)
1 ) . . . nrd(m(i)

di
)−

k−2
2 Φi,di(yi)(m

(i)
di

)

 .

Since nrd(m(i)
j ) = 1 for all i, j, this is exactly the matrix given in (5.2). In particular,

det
(
φi(gj)

)
6= 0 as claimed. The last assertion is obvious.

Now that we have analyzed the term Ω(s1)M and made a specific choice for the elements
gj , let us turn our attention to the integral occuring in the definition (5.1) of θ(s;φ, g). Our
next goal is to replace the integral by a finite sum that runs over the elements yj . While we
could easily obtain a description of A∗F \A∗A in terms of the yj from the decomposition

A∗A =
H∐

j=1

A∗F yjO
∗
A (where y∞j = 1) ,

it is more cumbersome to describe the quotient A1
F \A1

A of norm-1-elements in terms of the
yj . The idea is to write an element x ∈ A1

A as x = cyjk for some c ∈ A∗F , k ∈ O∗
A and

a unique j ∈ {1, . . . ,H}. If we assume for a moment that nrd(yj) = 1 holds for every j

then the norm-1-elements are characterized by the condition that nrd(ck) = 1. Therefore
we introduce the set

T := {(c, k) ∈ A∗F ×O∗
A | nrd(ck) = 1}

and try to find a map from A1
F \A1

A onto H copies of a suitable quotient of T , one for each
yj . Finally, these quotients of T can be described in terms of the quotients y−1

j O1
jyj\O1

A
over which we can easily integrate.
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Unfortunately, the situation is really a little more complicated because we cannot assume
that nrd(yj) = 1 holds for all j. More precisely, if we define an equivalence relation ∼ on
A∗A by

x ∼ y ⇐⇒ nrd(xy−1) ∈ F+
(
F+
∞ × ô∗F

)
then z ∼ yj for all z ∈ A∗F yjO

∗
A (cf. Lemma 1.2.7). On the other hand

nrd(A∗A) = {x ∈ A∗
F | xv ≥ 0 for all archimedean v} =

h+∐
l=1

tlF
+
(
F+
∞ × ô∗F

)
by the Strong Approximation Theorem 2.3.1. Therefore, all narrow ideal classes of F must
be represented in {(nrd(y1)), . . . , (nrd(yH))}. It follows immediately that there must be h+

inequivalent elements among the yj ’s. In particular, if h+ > 1 then not all yj can be of
norm 1.

Fortunately, all problems sketched above, in particular those arising from a non-trivial nar-
row class group, are only of a technical nature and can be mastered with the help of the
following lemmas.

Lemma 5.3.3. There is a group isomorphism

o∗+F /nrd(O∗
j ) ∼=

(
o∗+F /o∗2F

)/(
nrd(O∗

j )/o
∗2
F

)
,

and the cardinality of the last factor is

[nrd(O∗
j ) : o∗2F ] =

2ej

#O1
j

where ej := [O∗
j : o∗F ] .

Proof. The first part is an immediate consequence of the isomorphism theorem. For the
second assertion, consider the map

O∗
j → nrd(O∗

j )/o
∗2
F m 7→ nrd(m)o∗2F ,

which is a surjective group homomorphism with kernel O1
jo
∗
F . Hence

nrd(O∗
j )/o

∗2
F
∼= O∗

j/O
1
jo
∗
F
∼=
(
O∗

j/o
∗
F

)/(
O1

jo
∗
F /o

∗
F

)
and

O1
jo
∗
F /o

∗
F
∼= O1

j/(O
1
j ∩ o∗F ) = O1

j/{±1} .

Therefore, we obtain

[nrd(O∗
j ) : o∗2F ] =

[O∗
j : o∗F ]

1
2#O1

j

=
2ej

#O1
j

.
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Lemma 5.3.4. Let z ∈ A∗A.

(i) If z ∼ yj then there exist some elements η := ηz,j ∈ A∗F and b := bz,j ∈ O∗
A such that

nrd(zy−1
j ) = nrd(ηb).

(ii) In particular, let h be as before and g = yim
(i)
u as in Lemma 5.3.2. Then yj ∼ hg if

and only if the ideal nrd(Iij)ζ−1dacl is trivial in the narrow class group, i. e. it has a
totally positive generator.

Proof. (i) This is clear by definition of ∼ and Lemma 1.2.7. Note that η, b are not uniquely
determined.

(ii) Suppose yj ∼ hg. Choose η ∈ A∗F and b ∈ O∗
A such that nrd(ηb) = nrd(hgy−1

j ). By
construction of h, g we have nrd(g) = nrd(yi) and

nrd(h)v = 1 , nrd(h)p = (ζ−1δαtl)p for all v | ∞ and p <∞ .

Hence

nrd(Iij)ζ−1dacl = F ∩
⋂

p<∞

(
nrd(yiy

−1
j )ζ−1δαtl

)
p
op = F ∩

⋂
p<∞

(
nrd(hgy−1

j )
)
p
op

= F ∩
⋂

p<∞

(
nrd(ηb)

)
p
op = nrd(η)oF

since nrd(b)p ∈ o∗p for all p <∞. So nrd(η) is a totally positive generator of the ideal
nrd(Iij)ζ−1dacl. Conversely, suppose that nrd(Iij)ζ−1dacl = µoF for some µ ∈ F+.
Then

nrd(hgy−1
j )op =

(
nrd(Iij)ζ−1dacl

)
p
op = µpop for all p <∞ ,

so for all p < ∞ we can find some εp ∈ o∗p such that nrd(hgy−1
j )p = µpεp. Use

Lemma 1.2.7 to find η ∈ A∗F and b ∈ O∗
A such that nrd(η) = µ and

nrd(b)v = µ−1
v , nrd(b)p = εp for all v | ∞ and p <∞ .

For this choice of η and b it is easily verified that nrd(hgy−1
j ) = nrd(ηb), which proves

that yj ∼ hg.

Lemma 5.3.5. Consider the set

T := {(c, k) ∈ A∗F ×O∗
A | nrd(ck) = 1} .

For j ∈ {1, . . . ,H} define an equivalence relation ∼j on T by

(c, k) ∼j (c̃, k̃) ⇐⇒ c̃ = ecs−1 and k̃ = y−1
j syjk for some s ∈ O∗

j , e ∈ A1
F .
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Fix some z ∈ A∗A.

(i) The map

A1
F \A1

A
'−→

H∐
j=1
yj∼z

T/ ∼j , A1
Fx 7→

[
(η−1c, kb−1)

]
j

where xz = cyjk

and η, b are chosen as in part (i) of the previous lemma is a bijection. (Here [ · ]j
denotes the equivalence class modulo ∼j).

(ii) Fix a complete set of representatives R = {ν1, . . . , νr} of o∗+F /nrd(O∗
j ). For each

νi ∈ R, fix some mi ∈ O∗
A and ci ∈ A∗F such that νi = nrd(mi) = nrd(ci). Put

M = {m1, . . . ,mr} and C = {c1, . . . , cr}. Then there is a bijection

ΨR,M,C : T/ ∼j
'−→ R× (y−1

j O1
jyj)\O1

A

[(c, k)]j 7→
(
νi, [y−1

j t−1yjkm
−1
i ]
)

where t ∈ O∗
j is such that nrd(k) = νinrd(t). (Again, the brackets indicate the cosets

in the respective quotients.) The inverse map is

Ψ−1
R,M,C(νi, [k]) = [(c−1

i , kmi)]j .

Proof. (i) Take A1
Fx ∈ A1

F \A1
A. There is a unique j ∈ {1, . . . ,H} for which we can find

c ∈ A∗F and k ∈ O∗
A such that xz = cyjk. Then nrd(zy−1

j ) = nrd(ck) ∈ F+
(
F+
∞× ô∗F

)
,

so z ∼ yj . It follows from the definition of η and b that
(
η−1c, kb−1

)
∈ T . However,

the coset A1
Fx does not determine the pair

(
η−1c, kb−1

)
uniquely. But if A1

Fx = A1
F x̃

and xz = cyjk and x̃z = c̃yj k̃ then there exists an e ∈ A1
F such that

c̃yj k̃ = x̃z = exz = ecyjk , hence c̃−1ec = yj k̃k
−1y−1

j ∈ A∗F ∩ yjO
∗
Ay

−1
j .

We have thus found an e ∈ A1
F and an s := c̃−1ec ∈ O∗

j such that

η−1c̃ = η−1ecs−1 =
(
η−1eη

)
η−1cs−1 and k̃b−1 = y−1

j syjkb
−1 .

Consequently,
(
η−1c, kb−1

)
∼j

(
η−1c̃, k̃b−1

)
, which shows that the map is well-

defined. It is moreover bijective, the inverse image of a coset [(c, k)]j being

{A1
Fx ∈ A1

F \A1
A | xz = (ηecs−1)yj(y−1

j syjkb) for some s ∈ O∗
j , e ∈ A1

F }

= {A1
Fx ∈ A1

F \A1
A | x =

(
ηeη−1

)
ηcyjkbz

−1 for some e ∈ A1
F }

= {A1
F ηcyjkbz

−1} .

(ii) Use Lemma 1.2.7 again to see that we may indeed find elements mi ∈ O∗
A and ci ∈ A∗F

as required.

For (c, k) ∈ T , there is exactly one νi ∈ R such that nrd(k) ≡ νi mod nrd(O∗
j ), and

it is clear that all possible choices of t ∈ O∗
j with nrd(k) = νinrd(t) determine the
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same equivalence class [y−1
j t−1yjkm

−1
i ]. Now, if (c̃, k̃) ∼j (c, k) then we can find

some e ∈ A1
F and s ∈ O∗

j such that c̃ = ecs−1 and k̃ = y−1
j syjk. But then the

norms satisfy nrd(k̃) = nrd(k)nrd(s) = νinrd(st). So the pair (c̃, k̃) is mapped to(
νi, [y−1

j (st)−1yj k̃m
−1
i ]
)

=
(
νi, [y−1

j t−1yjkm
−1
i ]
)
. Therefore, ΨR,M,C is well-defined

on equivalence classes modulo ∼j . The inverse image of
(
νi, [m]

)
is

Ψ−1
R,M,C

(
νi, [m]

)
=
{
[(c, k)]j | nrd(k) = nrd(t)νi, [y−1

j t−1yjkm
−1
i ] = [m] for some t ∈ O∗

j

}
=
{
[(c, k)]j | nrd(c) = nrd(ts)−1ν−1

i , k = y−1
j tsyjmmi for some t ∈ O∗

j , s ∈ O1
j

}
=
{
[(c, k)]j | c = ec−1

i s−1, k = y−1
j syjmmi for some s ∈ O∗

j , e ∈ O1
j

}
=
{
[(c−1

i ,mmi)]j
}
.

The algebra A∗A and thus A∗F and O∗
A are equipped with the usual Haar measure, and the set

T in the previous lemma inherits their product measure d(c, k) = dc dk. On each quotient
T/ ∼j we may then define d[c, k]j as the quotient measure of d(c, k) with respect to the
canonical projection onto the equivalence classes modulo ∼j . Likewise, the sets A1

F \A1
A

and R × (y−1
j O1

jyj)\O1
A are equipped with quotient Haar measures. With respect to these

measures the map in part (i) of the lemma as well as Ψ−1 of part (iii) are measurable. Having
at our disposal measurable maps A1

F \A1
A →

∐
T/ ∼j and T/ ∼j→ R×(y−1

j O1
jyj)\O1

A allows
us to replace the integral over A1

F \A1
A, which appears in the definition (5.1) of θ(s;φ, g), by

integrals over (y−1
j O1

jyj)\O1
A. These will then be simplified further.

Lemma 5.3.6. Let f : A∗A → C be a left-A∗F -invariant integrable function. Let W ⊆ O∗
A

be a set of [o∗+F : o∗2F ] elements such that nrd(W ) is a complete set of representatives of
o∗+F /o∗2F . Then ∫

T/∼j

f(cyjk) d[c, k]j =
#O1

j

2ej

∑
w∈W

∫
(y−1

j O1
jyj)\O1

A

f(yjkw) dk .

Proof. Let R = {ν1, . . . , νr}, M = {m1, . . . ,mr} and C = {c1, . . . , cr} be as in part (iii) of
Lemma 5.3.5. Moreover, fix a set of representatives S = {σ1, . . . , σs} of nrd(O∗

j )/o
∗2
F , and

for each σl ∈ S, choose some sl ∈ O∗
j such that nrd(sl) = σl. For each l = 1, . . . , s, put

R̃ := {ν1σl, . . . , νrσl} , M̃ := {miy
−1
j slyj | i = 1, . . . , r} , C̃ := {cisl | i = 1, . . . , r} .

These sets have the same properties as R,M,C. We may therefore construct Ψ eR,fM, eC as in
Lemma 5.3.5. Then

Ψ−1eR,fM, eC
(
νiσl, [k]

)
=
{
[(cisl)−1, kmiy

−1
j slyj)]j

}
,
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so that an application of the transformation rule for integrals yields∫
T/∼j

f(cyjk) d[c, k]j =
r∑

i=1

∫
(y−1

j O1
jyj)\O1

A

f
(
(cisl)−1yj(kmiy

−1
j slyj)

)
dk

for each l = 1, . . . , s. Taking into account that s = [nrd(O∗
j ) : o∗2F ] = 2ej

#O1
j

(see Lemma 5.3.3)
and that f is left-A∗F -invariant, we obtain by summing over all l

2ej

#O1
j

∫
T/∼j

f(cyjk) d[c, k]j =
s∑

l=1

r∑
i=1

∫
(y−1

j O1
jyj)\O1

A

f
(
(cisl)−1yj(kmiy

−1
j slyj)

)
dk

=
∑

w̃∈fW
∫

(y−1
j O1

jyj)\O1
A

f(yjkw̃) dk ,

where W̃ := {miy
−1
j slyj | i = 1, . . . , r, l = 1, . . . , s} ⊆ O∗

A. Observe that the value of each of
the integrals in the last formula depends only on the coset O1

Ao∗F w̃ but not on the particular
choice of w̃. Instead of summing over W̃ , we may therefore sum over any set W ⊆ O∗

A
containing exactly rs = [o∗+F : o∗2F ] elements such that nrd(W ) is a set of representatives of
o∗+F /o∗2F .

Now, consider the situation of Shimizu’s Theorem 5.2.3 for a fixed φ = φjm and g = yim
(i)
u ,

which we always assume to be chosen as in Lemma 5.3.2. For the sake of clarity we drop all
indices and write only φ and g.

We use part (ii) of Lemma 5.3.5 (with z = hg) to rewrite
(
dim(σk−2)|det(s)|AF

)−1
θ(s;φ, g)

as follows (
dim(σk−2)|det(s)|AF

)−1
θ(s;φ, g)

=
∫

A1
F \A1

A

φ(xhg)
∑

a∈AF

(
Ω(s1)M

)
(g−1axhg) dx

=
H∑

j=1
yj∼hg

∫
T/∼j

φ(cyjkb)
∑

a∈AF

(
Ω(s1)M

)
(g−1acyjkb) d[(c, k)]j ,

where η ∈ A∗F , b ∈ O∗
A are such that

nrd(hgy−1
j ) = nrd(ηb) . (5.3)

Note that when passing from A1
F \A1

A over to T/ ∼j , the argument xhg transforms into
ηcyjkb. But since φ is A∗F -invariant on the left and aη runs through all of AF if a does, we
can omit η. Now we apply Lemma 5.3.6 and obtain(

dim(σk−2)|det(s)|AF

)−1
θ(s;φ, g)

=
H∑

j=1
yj∼hg

#O1
j

2ej

∑
w∈W

∫
(y−1

j O1
jyj)\O1

A

φ(yjkwb)
∑

a∈AF

(
Ω(s1)M

)
(g−1ayjkwb) dk . (5.4)
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Next, we will simplify the integral in (5.4). Consider a suitably integrable function h(k),
then∫

O1
A

h(k) dk =
∫

(y−1
j O1

jyj)\O1
A

∫
(y−1

j O1
jyj)

h(mk) dmdk =
∫

(y−1
j O1

jyj)\O1
A

∫
O1

j

h(y−1
j myjk) dmdk .

In particular, for h(k) = φ(yjkwb)
∑

a∈AF

(
Ω(s1)M

)
(g−1ayjkwb),∫

O1
A

φ(yjkwb)
∑

a∈AF

(
Ω(s1)M

)
(g−1ayjkwb) dk

=
∫

(y−1
j O1

jyj)\O1
A

∫
O1

j

φ(myjkwb)
∑

a∈AF

(
Ω(s1)M

)
(g−1amyjkwb) dmdk

=
∫

(y−1
j O1

jyj)\O1
A

∫
O1

j

φ(yjkwb)
∑

a∈AF

(
Ω(s1)M

)
(g−1ayjkwb) dmdk

where, in the last equality, we make again use of the fact that the integrand is A∗F -invariant
on the left. Now we see that the integrand does not depend on m, and hence∫

O1
A

φ(yjkwb)
∑

a∈AF

(
Ω(s1)M

)
(g−1ayjkwb) dk

= #O1
j ·

∫
(y−1

j O1
jyj)\O1

A

φ(yjkwb)
∑

a∈AF

(
Ω(s1)M

)
(g−1ayjkwb) dk .

Inserting this expression into (5.4) leads to(
dim(σk−2)|det(s)|AF

)−1
θ(s;φ, g)

=
H∑

j=1
yj∼hg

1
2ej

∑
w∈W

∫
O1

A

φ(yjkwb)
∑

a∈AF

(
Ω(s1)M

)
(g−1ayjkwb) dk . (5.5)

Now let us turn our attention to the term
(
Ω(s1)M

)
(g−1ayjwk). Recall from Lemma 5.3.2

that g is of the form g = yim for some i ∈ {1, . . . ,H} and some m ∈ {m(i)
1 , . . . ,m

(i)
di
} ⊆ A1

∞.
Also gpOp = yipOp for all p <∞. Using Lemma 5.3.1 we can deduce that the archimedean
part of

(
Ω(s1)M

)
(g−1ayjkwb) is(

Ω(s1)M
)∞(g−1ayjkwb) =

(
|ζ|−1Im(z)

) k
2 χk−2

(
(g−1ayjkwb)∞

)
e
(
nrd(g−1ayjkwb) z

)
.

Recall that nrd(k) = 1, nrd(g∞) = 1, y∞j = 1 and

nrd(g−1ayjkwb) = nrd
(
(hg)−1yjb

)
nrd(aw)nrd(h) = nrd(η−1)nrd(aw)nrd(h)

by equation (5.3). We have seen that nrd(h)v =
(
det(s)sgn(u)

)
v

= 1 at every archimedean
place. Hence

(
Ω(s1)M

)
(g−1ayjkwb) simplifies to(

Ω(s1)M
)
(g−1ayjkwb) =

(
|ζ|−1Im(z)

) k
2 χk−2

(
(g−1akwb)∞

)
e
(
nrd(η−1aw)z

)
.
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The non-archimedean part is

(
Ω(s1)M

)f (g−1ayjkwb) =

{
N (adcl)2 if g−1ayjkwb ∈ (adclb

−1O)p for all p <∞ ,

0 else

=

{
N (adcl)2 if a ∈ adclb

−1Iij ,

0 else

since kwb ∈ O∗
A by construction. We use these descriptions of

(
Ω(s1)M

)∞ and
(
Ω(s1)M

)f
to evaluate the integral in equation (5.5):∫
O1

A

φ(yjkwb)
∑

a∈AF

(
Ω(s1)M

)
(g−1ayjkwb) dk

=
(
|ζ|−1Im(z)

) k
2N (adcl)2

∫
O1

A

φ(yjkwb)
∑

a∈AF

e
(
nrd(η−1aw)z

)
χk−2

(
(g−1akwb)∞

)
1adclb−1Iij

(a)dk

=
(
|ζ|−1Im(z)

) k
2N (adcl)2

∑
a∈adclb−1Iij

e
(
nrd(η−1aw)z

) ∫
O1

A

φ(yjkwb)χk−2

(
(g−1akwb)∞

)
dk .

We know that φ is
∏

p<∞ O∗
p-invariant on the right, so the last integrand depends only on

the archimedean part (kwb)∞ of kwb. Hence∫
O1

A

φ(yjkwb)
∑

a∈AF

(
Ω(s1)M

)
(g−1ayjkwb) dk

= C Im(z)
k
2 ·

∑
a∈adclb−1Iij

e
(
nrd(η−1aw)z

) ∫
A1
∞

φ
(
yj(kwb)∞

)
χk−2

(
(g−1akwb)∞

)
dk∞ , (5.6)

where

C := vol(A1
∞\O1

A) |ζ|− k
2N (adcl)2

is a constant depending neither on s nor on φ, g. From now on we assume that the
archimedean part of w is

w∞ = (ν
1
2 , . . . , ν

1
2 ) ∈ Z(A∗∞) where ν = nrd(w) .

This assumption is indeed possible because by construction of the set W , the elements w can
be chosen arbitrarily in O∗

A provided that their norms form a complete set of representatives
of o∗+F /o∗2F . On this assumption,

χk−2

(
(g−1akwb)∞

)
= nrd(w)

k−2
2 χk−2

(
(g−1akb)∞

)
by Lemma 4.2.2. Moreover,

φ
(
yj(kwb)∞

)
= φ(yj(kb)∞)
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by part (iii) of Lemma 4.3.2. With these formulae together with Lemma 4.3.4 and a change
of the integration variable k∞ → (bkb−1)∞, equation (5.6) becomes∫
O1

A

φ(yjkwb)
∑

a∈AF

(
Ω(s1)M

)
(g−1ayjkwb) dk

= C Im(z)
k
2

∑
a∈adclb−1Iij

e
(
nrd(η−1aw)z

)
nrd(w)

k−2
2

∫
A1
∞

φ
(
yj(kb)∞

)
χk−2

(
(g−1akb)∞

)
dk∞

= C Im(z)
k
2

∑
a∈adclb−1Iij

e
(
nrd(η−1aw)z

)
nrd(w)

k−2
2

∫
A1
∞

φ
(
yj(bk)∞

)
χk−2

(
(g−1abk)∞

)
dk∞

=
C Im(z)

k
2

dimσk−2
nrd(w)

k−2
2

∑
a∈adclb−1Iij

e
(
nrd(η−1aw)z

)
Φ(yjb

∞)
(
(g−1ab)∞

)

where Φ(yj) = nrd( · ) k−2
2
(
ρ( · )φ

)
(yj) ∈ Harmk−2[X0, . . . , X3] is the harmonic polynomial

associated to φ. By Lemma 4.3.2, part (iii), the polynomial expression can be rewritten as

Φ(yjb
∞)
(
(g−1ab)∞

)
= nrd(g−1ab)

k−2
2 φ

(
yjb

∞b
∞

(g−1a)∞
)

= nrd(b)
k−2

2 nrd(g−1a)
k−2

2 φ
(
yj(g−1a)∞

)
= nrd(b)

k−2
2 Φ(yj)

(
(g−1a)∞

)
.

We insert this expression into equation (5.5) and use that nrd(w) = ν to get

θ(s;φ, g)

=
H∑

j=1
yj∼hg

C Im(z)
k
2 |det(s)|AF

2ej

∑
w∈W

nrd(wb)
k−2

2

∑
a∈adclb−1Iij

Φ(yj)
(
(g−1a)∞

)
e
(
nrd(η−1aw)z

)

=
H∑

j=1
yj∼hg

C Im(z)
k
2 |det(s)|AF

2ej

∑
ν∈o∗+F /o∗2F

(νnrd(b))
k−2

2

∑
a∈η−1adclb−1Iij

Φ(yj)
(
(g−1ηa)∞

)
e
(
νnrd(a)z

)
.

Recall that j(γ∞, i)k = Im(z)−
k
2 and |det(s)|AF

=
∣∣NF

Q (ζ)
∣∣N (dacl)−1. Thus we have

j(γ∞,i)kθ(s;φ, g)

= C1

H∑
j=1

yj∼hg

nrd(b)
k−2

2

ej

∑
ν∈o∗+F /o∗2F

ν
k−2
2

∑
a∈η−1adclb−1Iij

Φ(yj)
(
(g−1ηa)∞

)
e
(
νnrd(a)z

)
,

where

C1 :=
vol(A1

∞\O1
A)
∣∣NF

Q (ζ)
∣∣N (dacl)

2|ζ|k2

is again a constant that depends neither on s nor on φ, g.

Finally recall that φ and g, on which θ( · ;φ, g) depends, are chosen as in Lemma 5.3.2. So
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if we write φ = φjm and g = yim
(i)
u then

j(γ∞, i)kθ(s;φjm, yim
(i)
u )

=


C2

∑
ν∈o∗+F /o∗2F

ν
k−2
2

∑
a∈η−1adclb−1Iij

Φjm(yj)
(
(g−1ηa)∞

)
e
(
νnrd(a)z

)
if yj ∼ hg,

0 else

=


C2

∑
ν∈o∗+F /o∗2F

ν
k−2
2

∑
a∈η−1adclb−1Iij

(
ρ(m(i)

u )Φjm(yj)
)(

(ηa)∞
)
e
(
νnrd(a)z

)
if yj ∼ hg,

0 else

where

C2 :=
nrd(b)

k−2
2 C1

ej
=

nrd(b)
k−2

2 vol(A1
∞\O1

A)
∣∣NF

Q (ζ)
∣∣N (dacl)

2ej |ζ|
k
2

depends only on φjm, on yim
(i)
u and, via b, on the determinant of s. Recall that although s

depends on the element z ∈ Hn, the determinant det(s) does not. So for each choice of φjm

and yim
(i)
u we obtain a theta series

z 7→
∑

ν∈o∗+F /o∗2F

ν
k−2
2

∑
a∈η−1adclb−1Iij

(
ρ(m(i)

u )Φjm(yj)
)(

(ηa)∞
)
e
(
νnrd(a)z

)
(5.7)

which is a constant multiple of the above function. The polynomials
(
ρ(m(i)

u )Φjm(yj)
)

are
clearly harmonic and for fixed i, j there are

d2
i ≤

(
#{m | m = 0, . . . ,k− 2}

)2 =
n∏

v=1

(kv − 1)2

of them (Lemma 5.3.2).

So we have finally brought the integrals in Shimizu’s Theorem into the shape of quaternionic
theta series. Our proof of Theorem 5.2.1 is now complete.

Remark 5.3.7. Consider the theta series

Θ(z;Q) :=
∑

ν∈o∗+F /o∗2F

ν
k−2

2

∑
a∈η−1adclb−1Iij

Q(a∞)e
(
νnrd(a)z

)
for some harmonic polynomial Q ∈ Harmk−2[X0, . . . , X3], which is the essential part of the
series in equation (5.7). It is easily verified that nrd(η−1adclb

−1Iij) = a2d2c2l b
−2nrd(η−1Iij)

where

nrd(η−1Iij) = F ∩
⋂

p<∞
opnrd(η−1yiy

−1
j ) = F ∩

⋂
p<∞

opnrd(h−1b)

= F ∩
⋂

p<∞
opζ(δαtl)−1 = ζ(dacl)−1
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by equation (5.3) and the fact that nrd(b)p ∈ o∗p. Hence

nrd(η−1adclb
−1Iij) = adclb

−2ζ = acl

since dζ = b2 by construction. By Corollary 1.3.3 we conclude that Θ(z;Q) is a Hilbert
modular form of weight k and character 1 for the group Γ0

(
acld, D1D2

)
.



Chapter 6

Explicit computations and

results

Not only does Theorem 5.2.1 provide a set of generators of the spaces Sk

(
Γ0(cld, n), 1

)
of

Hilbert modular forms, these generators also have the advantage of being explicit enough
for computational purposes. In this final chapter we would therefore like to present some
examples and results of our computations, all of which have been carried out with the help
of the computer algebra system Magma, V.2.13-1 [13].

We fix a constant C > 0, which we will call the approximation level. Then the results of our
computations will be of the form

Θ(z) =
∑

a

c(a)e
(
nrd(a)z

)

where a runs through all elements in F such nrd(a)(i) ≤ C for all embeddings i = 1, . . . , n
and such that the Fourier coefficient c(a) 6= 0.

6.1 Sketches of the algorithms

Most of the algorithms that we make use of are either straightforward or based on functions
that are already included in the Magma-package. However, for the sake of completeness
we will still sketch those parts of our program that seem to require a few more words of
explanation.

99
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6.1.1 Algorithms concerning the number field

Magma provides the functions UnitGroup and RayClassGroup with which we are able to
compute the units and the narrow class group of the number field F .

Algorithm 6.1.1 (Computing o∗+F /o∗2F ). Given a totally real number field F , return a
complete set of representatives of the totally positive units of F modulo squares.

1. Determine o∗F and find a set U ⊆ o∗F of representatives for the classes o∗F /o
∗2
F .

2. Delete from U all elements that are not totally positive. Return U .

Algorithm 6.1.2 (Computing ζ). Given a number field F , compute a number ζ ∈ F ∗

and an integral ideal b of F such that the different d of F can be written as ζd = b2.

1. Compute the different d.

2. Compute representatives ai, i = 1, . . . , h of all ideal classes of F .

3. For i = 1, . . . , h check whether a2
i d
−1 is a principal ideal. If so, compute a generator ζ

and put b := ai. Return ζ and b and terminate. Else continue with the next i.

6.1.2 Algorithms concerning the quaternion ideals

We make use of the numerous algorithms that Magma provides for computations with
quaternion algebras. Among these there are algorithms for finding quaternion algebras of
given discriminant as well as computing a maximal order therein. Most of the algorithms
were implemented by J. Voight and D. Kohel, some are explained in [75].

Algorithm 6.1.3 (Finding a quaternion order). For a given squarefree integral ideal
m = p1 · . . . · pr return an order O in a suitable quaternion algebra A of level (D1, D2) such
that D1D2 = m.

1. If r ≡ n mod 2 then compute a quaternion algebra A of discriminant m and return a
maximal order O of A.

2. If r 6≡ n mod 2 and m = (1) then terminate with an error message.

3. If r 6≡ n mod 2 and m 6= (1) then compute a quaternion algebra A of discriminant
p2 · . . . · pr. Compute a maximal order M1 in A and put I := p1M1.
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4. Choose a random element x ∈ M1. If X2 − tr(x)X + nrd(x) has a root a modulo p1

then continue. Else repeat this step.

5. Put J := M1(x− a), compute the right order M2 of I + J . Use [12, Algorithm 1.5.1]
to compute O := M1 ∩M2.

6. If the level of O is (D1, D2) then return O. Else go back to step 4.

It is clear that Algorithm 6.1.3 returns the correct result if r ≡ n mod 2. It is also clear
that no order with the desired property can be found if m = (1) and r 6≡ n mod 2 because
in this case n is odd so that there exists no quaternion algebra of discriminant D1 = (1). In
particular, D1D2 = (1) cannot be true.

We claim that the algorithm returns an Eichler order of level D2 = p1 in the remaining case.
Let us briefly explain why this is indeed true. For any prime ideal p 6= p1 the localizations
of I and M1 at p coincide, i. e. Ip = M1,p. It follows that (I + J)p = M1,p = M2,p, so that
O is maximal at p. By construction

0 ≡ a2 − tr(x)a+ nrd(x) ≡ (x− a)(x− a) ≡ nrd(x− a) mod p1 ,

so vp1

(
nrd(x− a)

)
≥ 1. It can be shown that if vp1

(
nrd(x− a)

)
= 1 then the right order of

I + J is M2 = (x− a)−1M1(x− a) and O = M1 ∩M2 is of level D2 = p1. In this case the
algorithm terminates with the correct result, otherwise it will go back to find a different x.

Algorithm 6.1.4 (Computing the ideals Iij and orders Oi). Given an order O in
a quaternion algebra A, compute the orders Oi and ideals Iij defined by the local data
(Oi)p = yiOpy

−1
i and (Iij)p = yiOpy

−1
j , respectively. Here {y1, . . . , yH} denotes a complete

set of representatives of the double cosets A∗F \A∗A/OA.

1. Use the Magma-function RightIdealClasses to obtain a complete set {I1, . . . , IH}
of representatives of the O-right ideal classes.

2. For each i = 1, . . . ,H and each j = 1, . . . ,H compute Iij := IiI
−1
j .

3. Return the ideals Iij and the orders Oi := Iii. (A type conversion is necessary to
interpret Oi correctly as quaternion order.)

A formula for the class number of an Eichler order in a definite quaternion algebra can be
found in [72, Prop. 1.3]. Many examples of these class numbers have been computed and
tabulated in [68, Anhang A]. We used these tables to double-check the return values of the
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function RightIdealClasses. Unfortunately, there were cases in which RightIdealClasses

returned fewer ideal classes than predicted by [68]. Sometimes it was not even able to find
any classes at all but stopped with an error message. Apparently, this problem has been
fixed in the latest Magma-release. If not, one could also use a different approach of finding
all ideal classes by using Kneser’s method of neighbouring lattices, which is explained in
[47, Kapitel IX]. An implementation of this method has been sketched in [59], following the
ideas in [61].

However, in the examples that we present in the next two sections, no discrepancies occurred
between the class numbers computed by Magma and [68].

Algorithm 6.1.5 (Finding short vectors in a quaternion ideal). Given a quaternion
ideal I and S, T ∈ Rn determine all x ∈ I such that Si ≤ nrd(x(i)) ≤ Ti for all embeddings
i = 1, . . . , n.

Here we follow the enumeration algorithm described in [26, § 3]. For the step “Enumerate
one coefficient” contained therein we use the Fourier-Motzkin elimination (see for example
[70]).

We also need to be able to compute O∗/o∗F for a quaternion order O∗. This factor group
is finite and we need an explicit list of representatives. Although Magma provides an
algorithm to compute the unit group, this algorithm leads to unexpected error messages for
a number of orders, in particular for non-maximal orders. The error messages apparently
result from Magma being unable to determine the exact group structure of O∗/o∗F , but this
bug might have been fixed in the current Magma-release. For our purposes, however, the
group structure of O∗/o∗F is not relevant, we are only interested in the elements themselves.
Therefore we decided to adopt the Magma-algorithm in the following way:

Algorithm 6.1.6 (Computing the units in a quaternion order). Given a quaternion
order O return all elements in O∗ modulo o∗F .

1. Use Algorithm 6.1.1 to compute the set U of representatives of o∗+F /o∗2F .

2. For each u ∈ U use Algorithm 6.1.5 with S = T =
(
nrd(u(1)), . . . ,nrd(u(n))

)
to

compute all x ∈ O such that nrd(x) = u. Return the set of all such x.

Recall that for fixed Iij , a, cl we also need an element η ∈ A∗F which is defined by a condition
on the norm of the quaternion ideal η−1adb−1Iij . At a second glance we see that it is enough
to know nrd(η), and this is easily obtained:
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Algorithm 6.1.7 (Computing nrd(ηij)). Given a pair of indices i, j ∈ {1, . . . ,H} decide
whether there exists an element ηij ∈ A∗F that satisfies nrd(η−1adclb

−1Iij) = acl, and if so
return nrd(ηij).

1. Compute I := nrd(Iij)ζ−1dacl.

2. If I is trivial in Cl+ then return true and a totally positive generator of I. Else return
false.

6.1.3 Algorithms concerning the harmonic polynomials

The harmonic polynomials

Φim(yi) =
〈〈
σk−2( · )Pj,

∑
r∈O∗i /o∗F

Λk−2(r)Pm

〉〉
for i = 1, . . . ,H, m = 0, . . . ,k− 2

from Lemma 5.3.2 can be constructed in a straightforward way. We only need to compute
the unit group O∗

i /o
∗
F first, which can be achieved by Algorithm 6.1.6. In our examples we

always used the index j = 0, so Pj = Xk−2. The result will be a collection of

#
{
m | m = 0, . . . ,k− 2

}
=

n∏
v=1

(kv − 1)

harmonic polynomials in 4n variables, which are not necessarily linearly independent. In
fact, it may even happen that all of them are 0.

Now recall that these polynomials are not exactly what we need in order to evaluate the
theta series ∑

a∈adclb−1Iij

(
ρ(m(i)

u )Φjm(yj)
)
(a∞) e

(
νnrd(η−1a)z

)
in equation (5.7). What we are really interested in are the polynomials

ρ(m(i)
u )
(
Φjm(yj)

)
where the elements m(i)

u and the indices u,m are chosen as explained in Lemma 5.3.2.

Algorithm 6.1.8 (Finding elements m(i)
u ). Given a set {P1, . . . , Pd} of linearly indepen-

dent complex homogeneous polynomials in 4n variables, compute elementsm1, . . . ,md ∈ A1
∞

such that det
(
Pi(mj)

)
i,j
6= 0.

1. For each Pi and each monomial Xe1
1 · · ·Xe4n

4n (ej ≥ 0) appearing in Pi construct the
vector e = (e1, . . . , e4n). Collect all these vectors in a set E.
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2. Pick d random vectors e(1), . . . , e(d) ∈ E. For all j = 1, . . . , d and v = 1, . . . , n put

m̃(j)
v := e

(j)
4v−31 + e

(j)
4v−2i + e

(j)
4v−1j + e

(j)
4v k and m(j)

v :=
√

nrd(m̃(j)
v )

−1

m̃(j)
v .

Put mj := (m(j)
1 , . . . ,m

(j)
n ).

3. If det
(
Pi(mj)

)
ij
6= 0 then return m1, . . . ,md. Else go back to step 2.

The reason that we choose elements of that particular form is that we prefer elements
whose coefficient vector with respect to the quaternion basis 1, i, j, k contains many zeros
and small other coefficients. By restricting ourselves to those elements that correspond
to the monomials appearing in the Pi’s we avoid testing mj ’s for which we trivially have
Pi(mj) = 0 for all i. Since the polynomials P1, . . . , Pd are linearly independent it is clear
that by picking random elements m1, . . . ,md we will eventually find some that satisfy the
determinant condition det

(
Pi(mj)

)
i,j
6= 0.

6.2 First example over Q(
√

5) explained in detail

To illustrate how the different steps of the algorithm work we will explain an easy but
non-trivial example in detail. Consider the situation

F = Q(
√

5) , n = (2) , k = (4, 4)

and choose the approximation level to be C = 5. In this setting

oF = Z[ω] , ω =
1 +

√
5

2
, h+ = 1 , d = (1− 2ω) .

Algorithm 6.1.2 yields

ζ = (1− 2ω)−1 =
1
5
(1− 2ω) and b = (1) .

For n = (2) we need to consider the divisors m = (1) and m = (2) together with the ideals
a ∈ {(1), (2)} and a = (1), respectively. This leads to quaternion orders of the levels

(D1, D2) = (1, 1) and a = (1) ,

(D1, D2) = (1, 1) and a = (2) ,

(D1, D2) = (1, 2) and a = (1) .

For each level we use Algorithm 6.1.3 to determine a suitable quaternion algebra A, namely

A = 〈1, i, j, k〉 where i2 = j2 = −1 and ij = −ji = k ,
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and a maximal (or Eichler) order O. Then we have to construct all right O-ideals and all
orders Oi. In this particular situation it turns out that for every level under consideration
the class group is trivial, i. e.

H = H(D1,D2) = 1 .

So there is only one order Oi = O, and it follows that Iij = O for each of the levels.

Next, we construct the harmonic polynomials〈〈
σ(2,2)( · )P0,

∑
r∈O∗/o∗F

Λ(2,2)(r)Pm

〉〉
for m = 0, . . . ,k− 2 = (2,2) ,

where Pm = Xk−2−mYm as earlier. To this end we need to compute the unit group of
O using Algorithm 6.1.6. Note that since k = (4, 4) we will obtain (4 − 1)(4 − 1) = 9
polynomials, but they are not necessarily linearly independent.

For (D1, D2) = (1, 1), we find #O∗ = 120. All 9 polynomials turn out to be 0. Consequently,
there are no new forms of level m = 1, and we may terminate at this point.

For (D1, D2) = (1, 2) we have #O∗ = 24. The 9 polynomials span a 1-dimensional space
generated by P , say. According to Algorithm 6.1.8 we choose an element g ∈ A1

∞ such that
P (g) 6= 0. In our case the choice fell on

g =
(
1,

1√
2
(i + k)

)
∈
∏
v|∞

A1
v = A1

∞ ,

so that

ρ(g)P = − 5
8

(
(6− 2ω)− (3 + ω)i

)
X2

1X
2
5 + 5

4

(
1− (2 + ω)i

)
X2

1X5X6

− 5
4

(
(2 + ω) + i

)
X2

1X5X7 − 5
4

(
(3 + ω) + (6− 2ω)i

)
X2

1X5X8 + 5
8 (1 + ω)iX2

1X
2
6

+ 5
4 (1 + ω)X2

1X6X7 + 5
4

(
(2 + ω) + i

)
X2

1X6X8 − 5
8 (1 + ω)iX2

1X
2
7

+ 5
4

(
1− (2 + ω)i

)
X2

1X7X8 + (91 further terms) .

This is the polynomial that we have to evaluate at a∞ in order to compute the series∑
a∈adclb−1Iij

(
ρ(m(i)

u )Φjm(yj)
)
(a∞) e

(
nrd(η−1a)z

)
=
∑

a∈dO

(
ρ(g)P

)
(a∞)e

(
nrd(η−1a)z

)
.

Here

nrd(η) = nrd(dO) = d2 = (5) .

As we want to compute the theta series up to an approximation level C = 5, we need to
determine all a ∈ dO such that

nrd
(
(η−1a)(v)

)
≤ 5 , i. e. nrd

(
a(v)

)
≤ 25 for all embeddings v .

To this end we apply Algorithm 6.1.5 with I = dO, S = (0, 0) and T = (25, 25).



106 Chapter 6. Explicit computations and results

We summarize these results in the following table:

(D1, D2) H(D1,D2) #O∗ lin. independent
polynomials

a #short vectors

(1, 1) (1) —

(1, 1)
1 120 0

(2) —
(1, 2) 1 24 1 (1) 3121

After evaluating the polynomial at each short vector we obtain the theta series

Θ(z) =e(z) + e
(
(1 + ω)z

)
+ e
(
(2− ω)z

)
− 4 e(2z)− 10 e

(
(2 + ω)z

)
− 28 e

(
(3 + ω)z

)
− 10 e

(
(3− ω)z

)
+ 50 e(3z) + 16 e(4z)− 28 e

(
(4− ω)z

)
− 25 e(5z) + . . . .

As we know by our main theorem 5.2.1 that this series must generate S(4,4)

(
Γ0(d, (2)), 1

)
and as it is obviously non-zero, we can conclude that

dimC S(4,4)

(
Γ0(d, (2)), 1

)
= 1 .

In general, we will not be able to determine the precise dimension of the given space of
cusp forms. As we can only compute a finite number of terms in each theta series we will
not be able to detect any linear independencies that occur at a later point. In particular,
if all computed coefficients in a series are 0 we cannot conclude that the series itself is 0,
unless the number of computed terms is large enough. In [79] the question of how many
terms need to be calculated to determine whether a given series is indeed 0 is addressed
and solved. As the number of necessary terms turns out to be rather large we do not make
use of this bound. Instead we contend ourselves with truncating the computed theta series
after a certain term, which is determined by the chosen approximation level, and test those
truncated series for linear dependencies. Thus we obtain a lower bound for the dimension
of the respective space. However, we have to keep in mind that the true dimension might
be larger.

But note that we do know an upper bound for the dimension of Sk

(
Γ0(d, n), 1

)
: If d is the

number of linearly independent polynomials for a certain level, as given in the fourth column
of the table above, then d2 is the maximal dimension of the space of newforms in this level.
We may thus obtain an upper bound for the dimension of the whole space Sk

(
Γ0(d, n), 1

)
,

by adding all these d2’s up, here

dimC S(4,4)

(
Γ0(d, (2)), 1

)
≤ 02 + 02 + 12 = 1 .

In all the examples that we present in the following section we will not only list the theta
series that we found but also mention the maximal possible dimension of the respective
space.

With the methods introduced in this thesis an exact determination of the true dimension is
not possible.
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6.3 Further results

After this detailed example we conclude this chapter by listing some results that were com-
puted with the help of the algorithm sketched above. As always, we consider

Γ0(cld, n) , l = 1, . . . , h+ .

The tables are organized in the following way:

• The number field, certain invariants and the weight k are given in the caption. Here
we use the symbol ω for an element that generates the ring of integers in F , i. e.
oF = Z[ω].

• In the first column we list all small elements nrd(a) that contribute to the theta series
in the sense that the coefficient of e

(
nrd(a)z

)
does not vanish. The size of these

elements is restricted by the approximation level, which we always choose to be 5.

• The first row lists the different levels n that were considered, the second row their
respective norms N (n).

• The third row shows an upper bound for the dimension of the space Sk

(
Γ0(cl, n), 1

)
.

This bound is obtained by counting the linearly independent polynomials for each
subspace of newforms and adding the squares of these numbers up, as was explained
in the detailed example.

• Each column underneath an ideal n belongs to a single theta series that was found
for the level n. The number in the i-th row of each of these columns is the Fourier
coefficient of the the term e(nrd(a)z) where nrd(a) is the element given in the i-th row
of the leftmost column.

6.3.1 Theta series for Q(
√

5)

We saw in Remark 2.3.6 and in Lemma 4.3.1 that the space of cusp forms is {0} if the weight
k does not meet the condition

sgn(δ)k = 1 for all δ ∈ o∗F .

A fundamental unit of Q(
√

5) is ω = 1+
√

5
2 . Since the conjugates of ω have opposite sign,

the above condition is satisfied if and only if

k1 ≡ k2 ≡ 0 mod 2 .

So we only have to compute theta series of even weight. We will restrict ourselves to the
cases

k ∈ {(4, 4), (4, 6), (6, 6)} .
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An approximation level of 5 means in this case that the first twelve terms of each series will
be computed.

The third column of Table 6.1 summarizes the results of the previous section. Note that the
coefficients in this table corroborate the results given in [15, Table 2] as far as they can be
compared.

For weight k = (6, 6), we could only compute theta series of level n = 1. For all other levels
up to norm 30, one of the errors occurred that we explained in Section 6.1.

Table 6.1: F = Q(
√

5) , h+ = 1 , ω = 1+
√

5
2 , k = (4, 4)

n (1) (2) (2 + ω) (3) (3 + ω)
N (n) 1 4 5 9 11

max. dimension 0 1 1 4 1
0 — 0 0 0 0 0
1 — 1 1 1 0 1

1 + ω — 1 1 1 0 1
2− ω — 1 1 1 0 1

2 — −4 0 0 1 4
2 + ω — −10 −5 10 −2 4
3 + ω — −28 32 −28 2 −11
3− ω — −10 −5 10 −2 4

3 — 50 −50 −9 0 −2
4 — 16 −64 16 7 −48

4− ω — −28 32 −28 2 −10
5 — −25 25 295 −12 −109
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Table 6.2: F = Q(
√

5) , h+ = 1 , ω = 1+
√

5
2 , k = (4, 6)

n (1) (2) (2 + ω) (3)
N (n) 1 4 5 9

max. dimension 0 1 1 4
0 — 0 0 0 0
1 — 1 1 1 0

1 + ω — 2− ω 2− ω 2− ω 0
2− ω — 1 + ω 1 + ω 1 + ω 0

2 — 8 10 0 2
2 + ω — −18 + 6ω 15− 5ω 3− ω 3− ω

3 + ω — 48− 132ω −192 + 108ω 68− 47ω −4 + 7ω
3− ω — 12 + 6ω 10 + 5ω 2 + ω 2 + ω

3 — −90 30 12 3
4 — 64 −156 4 −32

4− ω — −84 + 132ω −84− 108ω 21 + 47ω 3− 7ω
5 — −445 125 −295 −30

Table 6.3: F = Q(
√

5) , h+ = 1 , ω = 1+
√

5
2 , k = (6, 6)

n (1)
N (n) 1

max. dimension 1
0 0
1 1

1 + ω 1
2− ω 1

2 20
2 + ω −90
3 + ω 252
3− ω −90

3 90
4 −624

4− ω 252
5 4975
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6.3.2 Theta series for Q(
√

3)

The field Q(
√

3) has narrow class number h+ = 2, the two ideal classes are represented by
c1 = (1) and c2 = (ω), where ω =

√
3. For each weight k and level n we will therefore obtain

two spaces of cusp forms, namely Sk

(
Γ0(d, n), 1

)
and Sk

(
Γ0(ωd, n), 1

)
.

A fundamental unit of o∗ = Z[ω] is ε = 2 + ω, which is totally positive. The condition
sgn(δ)k = 1 for all δ ∈ o∗F then amounts to

k1 + k2 ≡ 0 mod 2 .

If it is not satisfied then the respective space of cusp forms will be {0}. Therefore we consider
only

k ∈ {(3, 3), (3, 5), (4, 4), (5, 5)} ,

levels of norm up to 3 and an approximation level of 5, which gives us the first ten terms in
each theta series.

Some coefficients in Table 6.5 could not be computed correctly (indicated by “?”). It is very
likely that this is due to some rounding errors that occurred when handling the complex
harmonic polynomials, the coefficients of which are internally represented as floating point
numbers. We would need a closer analysis of this problem in order to fill the remaining gaps
in the table, but this is still in progress.

Table 6.4: F = Q(
√

3) , h+ = 2 , ω =
√

3 , k = (3, 3)

n (1) (1 + ω) (3− 2ω)
N (n) 1 2 3

max. dimension 0 0 1
0 — — 0
1 — — 1
2 — — −8

2− ω — — 1
c1 = (1) : 2 + ω — — 1

3 — — −3
3− ω — — 6
3 + ω — — 6

4 — — 16
5 — — −46

max. dimension 0 0 0
— — —

c2 = (ω) : — — —
— — —
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Table 6.5: F = Q(
√

3) , h+ = 2 , ω =
√

3 , k = (3, 5)

n (1) (1 + ω) (3− 2ω)
N (n) 1 2 3

max. dimension 0 1 1
0 — 0 0
1 — 16 83
2 — −64 ?

2− ω — 2 + ω 83(2 + ω)
c1 = (1) : 2 + ω — 16(31− 15ω) 6(29− 15ω)

3 — ? −54(13− ω)
3− ω — −64(3 + ω) −36(18 + 5ω)
3 + ω — ? ?

4 — ? −264(13− ω)
5 — −1760 ?

max. dimension 0 0 0
— — —

c2 = (ω) : — — —
— — —
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Table 6.6: F = Q(
√

3) , h+ = 2 , ω =
√

3 , k = (4, 4)

n (1) (1 + ω) (3− 2ω)
N (n) 1 2 3

max. dimension 1 5 5
0 0 0 0 0 0
1 1 1 0 1 0
2 4 0 1 4 0

2− ω 1 1 0 1 0
c1 = (1) : 2 + ω 1 1 0 1 0

3 21 21 0 −1 −2
3− ω −24 −16 −2 −2 1
3 + ω −24 −16 −2 −2 1

4 −80 −64 −4 −80 0
5 170 170 0 170 0

max. dimension 0 1 1
0 — 0 0
1 — 0 0
2 — 0 0

2− ω — 0 0
c2 = (ω) : 2 + ω — 0 0

3 — 0 1
3− ω — 1 0
3 + ω — 1 0

4 — 0 0
5 — 0 0
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Table 6.7: F = Q(
√

3) , h+ = 2 , ω =
√

3 , k = (5, 5)

n (1) (1 + ω) (3− 2ω)
N (n) 1 2 3

max. dimension 1 5 10
0 0 0 0 0 0 0
1 1 1 0 1 0 0
2 16 0 1 0 1 0

2− ω 1 1 0 1 0 0
c1 = (1) : 2 + ω 1 1 0 1 0 0

3 81 −111 12 33 3 −2
3− ω 0 32 −2 0 0 1
3 + ω 0 32 −2 0 0 1

4 256 128 8 256 0 −24
5 −1054 290 −84 −798 −16 0

max. dimension 0 1 1
0 — 0 0
1 — 0 0
2 — 0 0

2− ω — 0 0
c2 = (ω) : 2 + ω — 0 0

3 — 0 1
3− ω — 1 0
3 + ω — 1 0

4 — 0 0
5 — 0 0
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6.3.3 Theta series for Q(
√

2)

The narrow class number is h+ = 1, so there will only be one space Sk

(
Γ0(d, n), 1

)
for each

level n, as in the case Q(
√

5).

The ring of integers is oF = Z[ω] where ω =
√

2, and a fundamental unit of o∗F is ε = 1 +ω,
which has a positive as well as a negative real conjugate. As in the case Q(

√
5) we only need

to consider weight vectors k that satisfy

k1 ≡ k2 ≡ 0 mod 2 .

We choose to restrict ourselves to

k ∈ {(4, 4), (4, 6), (6, 6)} .

Table 6.8: F = Q(
√

2) , h+ = 1 , ω =
√

2 , k = (4, 4)

n (1) (ω) (1− 2ω)
N (n) 1 2 7

max. dimension 1 6 11
0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0

2 + ω −2 0 1 0 1 0 0
2 −4 −8 −2 0 2 0 0

2− ω −2 0 1 0 1 0 0
3 + ω −8 −8 0 0 0 1 0

3 26 26 0 2 0 0 −3
3− ω −8 −8 0 0 0 0 1

4 −16 32 24 −48 0 0 −4
5 138 138 0 −70 0 0 −26
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Table 6.9: F = Q(
√

2) , h+ = 1 , ω =
√

2 , k = (4, 6)

n (1) (ω)
N (n) 1 2

max. dimension 0 1
0 — 0
1 — 1

2 + ω — 4− 2ω
2 — 8

2− ω — 4 + 2ω
3 + ω — −24 + 40ω

3 — −114
3− ω — 24 + 40ω

4 — 64
5 — 178

Table 6.10: F = Q(
√

2) , h+ = 1 , ω =
√

2 , k = (6, 6)

n (1) (ω)
N (n) 1 2

max. dimension 4 33
0 0 0 0 0 0 0
1 1 0 1 0 0 0

2 + ω 0 1 0 1 0 0
2 40 −2 0 0 1 0

2− ω 0 1 0 1 0 0
3 + ω 8 −16 0 0 0 1

3 234 32 250 0 0 −2
3− ω 8 −16 0 0 0 1

4 −416 −104 −864 −144 12 −4
5 3194 −320 3034 0 0 20
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6.3.4 Theta series for Q[X]/(X3 −X2 − 2X + 1)

As a final example we consider a number field that is not quadratic but of degree 3. The
cubic field of smallest discriminant that is moreover totally real is Q[X]/(X3−X2−2X+1).
It has discriminant 49.

Denote by ζ a primitive element of F , i. e.

F = Q(ζ) , where ζ3 − ζ2 − 2ζ + 1 = 0 .

We find that the unit group of F is

o∗F = {±1} × 〈1 + ζ − ζ2〉 × 〈1− ζ〉 .

With respect to the three real embeddings F ↪→ R, the elements 1 + ζ − ζ2 and 1− ζ have
signs (+−−) and (+−+), respectively. It follows that o∗F contains elements of every possible
sign pattern. Hence the condition sgn(δ)k = 1 for all δ ∈ o∗F is satisfied if and only if

k1 ≡ k2 ≡ k3 ≡ 0 mod 2 .

We will contend ourselves with k = (4, 4).

Recall that forms of level 1 and their translates are not included in the spaces that we
compute! (Cf. again Theorem 5.2.1, part (ii) and Remark 5.2.8.)
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Table 6.11: F = Q(ζ), h+ = 1 , oF = Z[ζ] , k = (4, 4)

n (1 + 2ζ − ζ2) (2)
N (n) 7 8

max. dimension 1 4
0 0 0 0
1 1 1 0
ζ2 1 −2 −17

1 + ζ2 28 −24 −1
1− ζ + ζ2 −7 1 0

2− ζ 1 1 0
2− ζ + ζ2 −110 110 1

2 23 0 2
2 + ζ −7 −24 −1

3 154 180 25
3− ζ 28 −2 −17

3 + ζ − ζ2 1 1 0
3 + ζ −110 110 1

4 17 64 0
4 + ζ − ζ2 28 −2 −17

4− ζ2 −7 −24 −1
5− ζ2 −110 110 1

5 −1904 182 616
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