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Abstract Accurate knowledge of the dispersion relations

of guided waves in plates is important for the efficient use

of Lamb wave-based damage-detection methods. In this

paper, we introduce a method which aims at automatically

extracting the dispersion curves from laser vibrometer

measurement data in an easy and robust manner. This

method works by Fourier transforming the measurement

data into the wavenumber domain and then applying the

matrix pencil method by Hua and Sarkar to extract the

wavenumber-dependent frequencies. As an additional

result, we are able to experimentally detect backward

propagating waves in aluminium plates.
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1 Introduction

The study of the behaviour of guided waves in plates is of

growing interest due to their potential use in non-destruc-

tive evaluation (NDE) and structural health monitoring

(SHM), e.g. the comprehensive books of Giurgiutiu [5] and

Rose [13]. Since guided wave propagation in thin plates is

dispersive, i.e. the velocity of wave propagation depends

on the frequency, many conventional damage-detection

methods are no longer straightforward to apply, especially

if they are based on time-of-flight measurements. There-

fore, it is necessary to know the dispersion relations

accurately. Based on the elastic wave equation, dispersion

curves for elastic material can be computed numerically if

the material parameters are known [1, 9, 10, 15]. Never-

theless, the elastic wave equation is an ideal model which

approximates the complex behaviour of the actual material

at hand. This is particularly true for composite structures

which often are also modelled as elastic material. Hence, it

is important to have a means to verify the validity of the

model experimentally.

Time-of-flight based measurements of phase and group

velocities suffer from difficulties in dealing with multiple

modes and high velocities. Some methods using Fourier

transforms in space and time and time–frequency analysis

have been proposed to overcome these difficulties [2, 6,

12]. However, the determination of dispersion curves with

these methods still often requires some graphical methods

like extracting peaks of signals or ridges in two-dimen-

sional surfaces, which is quite sensitive to noise.
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A. Wöstehoff

e-mail: woestehoff@hsu-hh.de

S. von Ende

e-mail: Sven.vonEnde@rolls-royce.com

S. Föll

e-mail: foell@hsu-hh.de

R. Lammering

e-mail: rolf.lammering@hsu-hh.de

123

CEAS Aeronaut J

DOI 10.1007/s13272-012-0055-7



In this paper, we introduce a method which aims at

automatically extracting dispersion curves from laser

vibrometer measurement data in an easy and robust

manner. This method works by Fourier transforming the

measurement data into the wavenumber domain and then

applying the matrix pencil method by [8] to extract the

wavenumber-dependent frequencies. Due to the high

spatial and temporal resolution of the laser vibrometer and

robustness of the matrix pencil method, we get very

accurate results, which is confirmed by comparing the

experimental results with the known theoretical values for

aluminium plates. As an additional result, we are able to

experimentally detect backward propagating waves in

aluminium plates.

2 Dispersion relations via mode decomposition

in the wavenumber domain

Let Uðx; tÞ be the out-of-plane component of the velocity

vector of a wave travelling in the plate and let

Ûðk; tÞ ¼
ZZ

R
2

Uðx; tÞe�ikTx dx

be its Fourier transform into the wavenumber domain,

where

kTx ¼ k1x1 þ k2x2

is the standard scalar product of the vector x ¼ ðx1; x2ÞT of

the space variables with the wave-vector k ¼ ðk1; k2ÞT:
After the initial excitation, there are supposed to be no

external forces. Hence, we can decompose the signal

Ûðk; tÞ into elementary wave modes, i.e. a sum of complex

exponentials [15],

Ûðk; tÞ ¼
X

n

anðkÞe2pifnðkÞt;

where the sum is over all excited modes having a non-

vanishing out-of-plane component, with wavenumber-

dependent frequencies fnðkÞ and amplitudes anðkÞ: In

theory, the sum may be infinite, but in practice, only a finite

number l of wave modes will make a major contribution to

the signal and we can approximate the signal by a finite

sum and some additive noise

Ûðk; tÞ �
Xl

n¼1

anðkÞe2pifnðkÞt þ noise:

Now the dispersion relations are readily obtained by esti-

mating l and fnðkÞ: This can be efficiently done with the

help of the matrix pencil method by Hua et al. [8], which

we will shortly describe in the next section.

Note that some noise in the above approximation is

always unavoidable: on the one hand, we must approximate

the continuous Fourier transform by a discrete version due

to a finite number of samples. However, this discretization

error will be small because of the high spatial resolution of

the laser vibrometer. On the other hand, there will be a

cutoff error due to a restricted measurement area X � R
2;

i.e. we can only compute

Ûðk; tÞ �
ZZ

X

Uðx; tÞe�ikTx dx:

The cutoff error can be made relatively small using wave

packets with initially small support (of course after some

time, such wave packets will dissolve due to dispersion).

Nevertheless, the approximations are quite accurate and the

matrix pencil method is robust to noise, which will be

confirmed in our experiments.

We want to point out that the dispersion relations fnðkÞ
may also be guessed by calculating for each wave-vector k

the discrete Fourier transform of Ûðk; tÞ with respect to

time. Fixing the direction of k and plotting the Fourier

coefficients in a wavenumber–frequency-plane one can see

the dispersion curves as ridges in the diagram (Fig. 1).

Even if it is easy to identify those ridges visually, the

extraction of the exact values from this two-dimensional

surface would still be a hard task left to do, whereas using

the method explained in this paper enables us to determine

the exact values fnðkÞ automatically in an easy manner.

Furthermore, the matrix pencil method allows us to

detect complex frequencies, which means that there is the

possibility to measure damping from the same data without

additional effort. This potential will be further exploited

when we apply our method to examine anisotropic

materials.

Fig. 1 Fourier coefficients of a measured wave in a wavenumber–

frequency-plane
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3 Estimating the number of modes and their

wavenumber-dependent frequencies by the matrix

pencil method

For each fixed wave-vector k, we can form a data sequence

(ul)l,

ul :¼ Ûðk; tlÞ �
Xl

n¼1

anðkÞzl�1
n ; tl :¼ ðl� 1Þ=rs;

l ¼ 1; . . .; m;

where rs is the time-sample-rate, m the number of samples

which is supposed to be much larger than l, and

zn :¼ e2pifnðkÞ=rs ; n ¼ 1; . . .; l:

To estimate the number of modes and to get the dispersion

relations fnðkÞ, we follow [8] and use the matrix pencil

method to estimate l and extract the values zn from the

data sequence (ul)l. We shortly describe this method here

and refer to [8, 14] for further information.

We form two (m - k) 9 k Hankel matrices X1; X2 from

the data sequence (ul)l,

X1 :¼

u1 u2 � � � uk

u2 u3 � � � ukþ1

..

. ..
. ..

.

um�k um�kþ1 � � � um�1

0
BBB@

1
CCCA

and

X2 :¼

u2 u3 � � � ukþ1

u3 u4 � � � ukþ2

..

. ..
. ..

.

um�kþ1 um�kþ2 � � � um

0
BBB@

1
CCCA:

The number k is called the pencil parameter. If we choose

k such that

l� k� m� l

then both matrices X1; X2 have rank l and each zn is a

rank-reducing number for the matrix pencil

X2 � zX1; z 2 C: ð1Þ

Hence, the values zn may be found as the l generalized

eigenvalues of the matrix pair X1; X2: However, since

some noise is present and l is a priori unknown, some

precaution must be taken.

First, to combat noise a choice

m=3� k� m=2

for the pencil parameter k was suggested in [8]. In our

experiments, we obtained very good results for k = 5/12 m
(rounded), where the number of time samples was m C 400

and the expected number of modes l B 10.

Second, singular-value decomposition (SVD) is used to

estimate l: let

X1 ¼ URV�

be the reduced SVD of X1; where U; V are matrices having

orthonormal columns and R ¼ diagðr1; r2; . . .Þ is a

diagonal matrix containing the non-negative singular

values of X1 in decreasing order. Then, l is chosen to be

the largest integer such that

rj

r1

� d; j ¼ 1; . . .; l;

where 0 \ d\ 1 is a threshold, so that relatively small

singular values are attributed to noise and will be discarded

in the following way. Let ~R ¼ diagðr1; . . .; rlÞ be the

diagonal matrix containing only the first l singular values

of X1; and let ~U; ~V be the matrices consisting of only the

first l columns of U; V, respectively. Multiplying

the matrix pencil (1) with ~U
�

from the left and with ~V
from the right yields

~U
�
X2

~V� z~U
�
X1

~V ¼ ~U
�
X2

~V� z~U
�
URV� ~V

¼ ~U
�
X2

~V� z~R:

Now we solve for the rank-reducing numbers of the

modified pencil

~U
�
X2

~V� z~R;

which in the noise-free case coincide with those of (1).

4 Experimental setup

The following experiment was carried out to measure the

out-of-plane velocity at the top face of an elastic plate

which is the main input to calculate the corresponding

dispersion curves.

A circular piezoelectric ceramic with 16-mm diameter

and 0.27-mm thickness is glued with Loctite 401 superglue

to the surface of a 600 9 900 9 5 mm aluminum-plate.

The out-of-plane velocity is measured along a line from the

wave source to the boundary with a laser scanning vib-

rometer (Polytec PSV 400). The scanning path is equipped

with a strip of reflector foil to improve the measured signal.

As an additional improvement, the signal is averaged from

56 measurements.

The input signal—a rectangular burst with a frequency

of 975 kHz—is generated by a Tektronix AFG 3021 single

channel arbitrary function generator and is amplified with

the help of a compact power amplifier (Develogic WBHV

2A600) to an amplitude of around 60 Vpp: In Fig. 2, the

experimental setup is shown.

Dispersion curves
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5 From laser vibrometer measurement data

to matrix pencil data

Since we examined an isotropic material, we measured all

points in one line assuming a plane wave. The measure-

ment area and, hence, the Fourier transform in space are

only one-dimensional. We now can approach the problem

from two different sides. Either we first calculate the dis-

crete Fourier transform in space and then, use the matrix

pencil algorithm to estimate the frequencies for each

wavenumber, or we first calculate the discrete Fourier

transform in time and afterwards use the matrix pencil

algorithm to find wavenumbers associated with frequency.

Although in theory, both approaches should yield the same

result, in practice, one approach may perform better than

the other, depending on the dataset. Since we found that

they may discover complementary parts of the dispersion

curves, we suggest to always perform both, compare Fig. 6.

As both approaches work analogously, we will only

describe in detail the first one.

The signal we used is a wave packet with support as

small as possible. We chose it that way to reduce the cutoff

error. A short pulse consists of a broader band in the

wavenumber domain, so dispersion will cause the pulse to

dissolve as the time passes. However, since we are inter-

ested in observing as many wavenumbers as possible, the

cutoff error can hardly be avoided completely, hence, we

employed windowed discrete Fourier transform to further

improve the results.

The laser vibrometer data consisted of velocity values

measured at M = 488 equidistant points in space and at

N = 400 times, where the length of the scanning path was

L & 54.91 cm and the duration of the measurement T &
0.1562 ms (Fig. 3).

The discrete wavenumbers obtained by the discrete

Fourier transform with M samples in space are

Fig. 2 Experimental setup

(without function generator and

amplifier)

Fig. 3 The raw data at two

different times. The out-of-

plane velocity v versus the

position s in the measurement

area is plotted
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�M

2
þ 1; . . .; 0; . . .;

M

2

� �
� 2p

L
:

Therefore, the highest measurable wavenumber is

2,784 m-1.

For each time t 2 f1. . .Ng, we have the measured, thus

noisy sequence

ðut
lÞl :¼ ð~ut

lÞl þ noise l 2 f1. . .Mg;

where ~ut
l would be the true noiseless data. From this

sequence, we calculate the windowed discrete Fourier

transform

ût
l ¼

XM�1

n¼0

wnut
ne�2pinl

M; for l ¼ 0. . .M � 1; ð2Þ

where wl is a window-function to diminish the cutoff error.

The sequence (2) is then used as input to the matrix pencil

algorithm as described in Sect. 3.

Window functions usually feature Fourier transforms

that have a narrow peak at 0, the main lobe, and several

smaller side lobes. Window functions with smaller side-

lobes have a wider main lobe and vice versa. Therefore,

windowing can suppress the cutoff error with the drawback

of a lesser accuracy regarding the position of the investi-

gated signal on the frequency axis. We chose the Kaiser

window as it possesses a parameter to control this trade-off

between the main lobe’s width and the side lobes’ ampli-

tudes. See [7] for further detail. The Kaiser window is

defined as

wn ¼
I0 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n�1�M

2

M

� �2
r !

I0ðaÞ
; n ¼ 1. . .M;

where I0 is the modified Bessel function of zeroth order.

The parameter a controls the trade-off. The value a = 0

corresponds to a rectangle window and as a increases, the

window narrows, the main lobe widens and the side lobes’

amplitudes decrease.

6 Results and detection of backward propagating

waves

In all figures containing dispersion curves, red crosses and

blue circles identify values determined from measurement

data by the method described in this paper. Black solid

lines represent the ‘‘true’’ dispersion curves based on the

elastic model with literature values taken for the material

parameters of aluminium. Since these curves have no

explicit analytical description, they were computed

numerically by use of the strip element method [4, 9, 15].

Dispersion diagrams are often plotted as phase velocity

cp ¼ 2p f
k versus frequency f. In our situation, it is more

convenient to plot frequency f versus wavenumber k. Of

course, each of the diagrams can easily be obtained from

the other. For a comparison, see Fig. 4, which also clarifies

the names of the modes.

Figure 5 illustrates the influence of the parameters d and

a to the output of the algorithm. In the left column one can

see that a lower threshold d results in more points as

potential candidates for dispersion curves, but also in more

noise, whereas in the right column a higher window

parameter a removes some of that noise. The diagrams are

cropped at wavenumbers above k ¼ 1;760 m�1 due to more

noise in that area.

Figure 6 compares the two approaches mentioned at the

beginning of the previous section, namely using discrete

Fourier transform in space and matrix pencil method in

time or discrete Fourier transform in time and matrix pencil

method in space. Apparently, both approaches show partly

different sections of the dispersion curves and are, thus,

complementing each other.

Let us elaborate a little further the way the dispersion

diagrams are plotted, because actually they contain some

more information which allowed us to experimentally

detect backward propagating waves.

Calculating the (windowed) discrete Fourier transform

in space, we obtain coefficients corresponding to both

negative and positive wavenumbers. Since for each t, the

sequence un
t is real, it holds that ût

M�l ¼ ût
l: This means that

Fig. 4 A comparison between

the f - k- and cp - f-diagrams

Dispersion curves
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we only have to take into account the positive wavenum-

bers, because for negative wavenumbers, the matrix pencil

method will yield the same frequencies as for the corre-

sponding positive ones, only with alternate sign. Never-

theless, we may get frequencies with negative signs,

because the frequencies are extracted from complex

exponentials and different signs contain information about

the direction in which the waves are travelling. This infor-

mation is partly lost in Figs. 4, 5 and 6, because we only

plotted the absolute values of the frequencies determined

with the matrix pencil method. To uphold this information,

we plotted the frequencies with signs in Fig. 7.

Single-frequency waves are travelling with the phase

velocity cp ¼ 2p f
k and small band wave groups are trav-

elling with the group velocity cg ¼ 2p df
dk ; [1]. Since we

only plotted the positive wavenumbers, the sign of the

phase velocity is determined by the sign of the frequency in

Fig. 7, and the sign of the group velocity is determined by

the slope of the respective dispersion curve. A positive sign

means that the waves are travelling away from the source

and a negative sign means that the waves are travelling

towards the source. Hence, all red crosses in Fig. 7 indicate

wave groups travelling away from the source. The blue

circles belong to a wave group that was reflected at the

boundary and is travelling towards the source.

Usually, the phase velocity and group velocity have the

same sign. If they have different signs one speaks of

backward propagating waves. The red crosses in the lower

half of the diagram in Fig. 7 show that we have experi-

mentally verified that this phenomenon actually occurs

with guided waves in aluminium plates. Here, it occurs

with a special symmetric wave mode, in Fig. 4, marked as

Fig. 5 A comparison of

dispersion diagrams for

different values of a and d. Left
column Influence of the

threshold parameter d of the

matrix pencil method. It

controls which part of the sum

of exponentials approximating

the Fourier-transformed signal

is attributed to noise, where

d = 0 means the whole sum is

trusted. Right column Influence

of the window parameter a. It

controls the windowing

function, where a = 0 means

rectangular windowing

F. Schöpfer et al.

123



~S1; which has been described before in theoretical studies

by [3]; see also [11]. It is excited in a small frequency band

around 620 kHz together with the first appearance of the S1

mode. Note that in many publications, such parts of the

dispersion curves in cp - f-diagrams are omitted.

Although by plotting only the absolute values of the

frequencies in Figs. 4, 5 and 6, we loose the knowledge on

the direction in which the waves are travelling, we still

uphold the information on whether we deal with backward

propagating waves.

7 Conclusions

We have demonstrated that applying the matrix pencil

method to laser vibrometer measurement data is an easy

and robust method to experimentally determine the dis-

persion curves of guided waves in plates. So far, accurate

results have been obtained for aluminium plates where the

experimentally determined values can be compared with

known theoretical values. The method is not restricted to

deal with isotropic material and the study of its effective-

ness when dealing with anisotropic and laminated material

is currently under investigation. Since our method also

offers the possibility to extract complex frequencies and,

thus, to measure damping without additional effort, this

potential will also be exploited for composite structures

where damping plays a decisive role.
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