User Tools

Site Tools


bistochastic_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
bistochastic_group [2020/02/10 06:52]
amang created
bistochastic_group [2021/11/23 11:56] (current)
Line 1: Line 1:
 ====== Bistochastic group ====== ====== Bistochastic group ======
  
-A **bistochastic group** is any member of a sequence $(B_N)_{N\in \N}$ of [[classical matrix groups]].+A **bistochastic group** is any member of a sequence $(B_N)_{N\in \N}$ of [[classical ​orthogonal ​matrix groups]].
  
 ===== Definition ===== ===== Definition =====
  
-For given $N\in \N$ and any scalar $N\times N$-matrix $u=(u_{i,​j})_{i,​j=1}^N\in \C^{N\times N}$ with $a_{i,​j}\geq 0$ for all $i,​j\in\{1,​\ldots,​N\}$,​ i.e., with //​non-negative entries//, the matrix $A$ is called  +For given $N\in \N$ any scalar $N\times N$-matrix $u=(u_{i,​j})_{i,​j=1}^N\in \C^{N\times N}$ is called  
-  * **right stochastic** if $\sum_{\ell=1}^N u_{i,​\ell}=1$ for all $i\in \{1,\ldots,n\}$, i.e., if each row of $u$ sums up to $1$, +  * **right stochastic** if $\sum_{\ell=1}^N u_{i,​\ell}=1$ for all $i\in \{1,\ldots,N\}$, i.e., if each row of $u$ sums up to $1$, 
-  * **left stochastic** if $\sum_{k=1}^N u_{k,j}=1$ for all $j\in \{1,\ldots,n\}$, i.e., if each column of $u$ sums up to $1$,+  * **left stochastic** if $\sum_{k=1}^N u_{k,j}=1$ for all $j\in \{1,\ldots,N\}$, i.e., if each column of $u$ sums up to $1$,
   * **bistochastic** or **doubly stochastic** if $u$ is both right and left stochastic.   * **bistochastic** or **doubly stochastic** if $u$ is both right and left stochastic.
-Right or left stochastic matrices are also known as **probability matrices**, **transition matrices**, **substitution matrices** or **Markov matrices**. 
  
-The set of bistochastic $N\times N$-matrices ​forms a compact Hausdorff semigroup with respect to the topology inherited from $\C^{N\times N}$. The inverse ​of a regular bistochastic matrix ​is generally //not// bistochastic.+For every $N\in \N$ the **bistochastic group** for dimension $N$ is the subgroup ​of the [[wp>​general linear group]] $\mathrm{GL}(N,​\C)$ given by all bistochastic ​[[orthogonal group|orthogonal]] ​$N\times N$-matrices, i.e., the set 
 +$$B_N\colon\hspace{-0.6em}=\{ u\in \C^{N\times N}\,\vert\, u=\overline{u},​\,​ uu^t=u^tu=I,​ \, \forall_{i,​j=1}^N:​ {\textstyle\sum_{\ell=1}^N} u_{i,​\ell}={\textstyle\sum_{k=1}^N} u_{k,​j}=1\},​$
 +where, if $u=(u_{i,​j})_{i,​j=1}^N$,​ then $\overline u=(\overline{u}_{i,​j})_{i,​j=1}^N$ is the complex conjugate ​of $u$ and $u^t=(u_{j,​i})_{i,​j=1}^N$ the transpose and where $I_N$ is the identity $N\!\times \!N$-matrix.
  
-For every $N\in \Nthe **bistochastic group** for dimension $N$ is the subgroup ​of the [[wp>​general linear group]] $\mathrm{GL}(N,​\C)$ given by all //​bistochastic//​ __orthogonal__ ​$N\times N$-matrices, i.e., the set +Note that the elements of $B_Nare __not__ required to have non-negative entries. Stochastic matrices with non-negative entries are known as **probability matrices**, **transition matrices**, **substitution matrices** or **Markov matrices**. The set of such $N\times N$-matrices ​forms a compact Hausdorff semigroup with respect to the topology inherited from $\C^{N\times N}$ -- but not a group. In facta bistochastic matrix with non-negative entries has a bistochastic inverse with non-negative entries ​if and only if it is a permutation matrix [(:​ref:​MonPle73)].
-$$B_N\colon\hspace{-0.6em}=\{ u\in \C^{N\times N}\,\vert\, u=\overline{u},​\,​ uu^t=u^tu=I,​ \forall_{i,​j=1}^N: ​ u_{i,j}\geq 0, \, {\textstyle\sum_{\ell=1}^N} u_{i,​\ell}={\textstyle\sum_{k=1}^N} u_{k,​j}=1\},​$+
-where, if $u=(u_{i,​j})_{i,​j=1}^N$,​ then $\overline u=(u^\ast_{i,​j})_{i,​j=1}^N$ ​is the complex conjugate of $u$ and $u^t=(u_{j,i})_{i,j=1}^N$ the transpose and where $I_N$ is the identity $N\!\times \!N$-matrix.+
  
 +===== Basic properties =====
 +
 +The bistochastic groups $(B_N)_{N\in \N}$ are an [[easy_quantum_group|easy]] family of compact matrix quantum groups, i.e., the intertwiner spaces of their corepresentation categories are induced by a [[category of partitions]]. More precisely, it is the [[category of all partitions with small blocks]] that induces the corepresentation categories of $(B_N)_{N\in \N}$. Its canonical generating set of partitions is $\{\crosspart,​\singleton\}$. ​
 +
 +===== Representation theory =====
 +
 +===== Cohomology =====
 +
 +===== Related quantum groups =====
 +
 +===== References =====
 +
 +[( :​ref:​MonPle73 >>
 +author: ​ Montague, J.S. and Plemmons, R.J.
 +title: ​  ​Doubly stochastic matrix equations
 +year:    1973
 +journal: Israel Journal of Mathematics
 +volume: ​ 15
 +issue: ​  3
 +pages: ​  ​216-229
 +url:     ​https://​doi.org/​10.1007/​BF02787568
 +)]
 +
 +[( :​ref:​BanSp09 >>
 +author: ​ Banica, Teodor and Speicher, Roland
 +title: ​  ​Liberation of orthogonal Lie groups
 +year:    2009
 +journal: Advances in Mathematics
 +volume: ​ 222
 +issue: ​  4
 +pages: ​  ​1461--150
 +url:     ​https://​doi.org/​10.1016/​j.aim.2009.06.009
 +archivePrefix:​ arXiv
 +eprint ​  :​0808.2628
 +)]
  
bistochastic_group.1581317523.txt.gz · Last modified: 2021/11/23 11:56 (external edit)