User Tools

Site Tools


free_bistochastic_quantum_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
free_bistochastic_quantum_group [2020/01/02 16:25]
amang created
free_bistochastic_quantum_group [2021/11/23 11:56] (current)
Line 1: Line 1:
 ====== Free bistochastic quantum group ====== ====== Free bistochastic quantum group ======
  
-The **free bistochastic quantum groups** are the elements of a sequence $(B_N^+)_{N\in \N}$ of [[compact matrix quantum groups]] introduced by Banica and Speicher in [[(:​ref:​BanSp09)]]. Each $B_N^+$ is a [[free_orthogonal_easy_quantum_group|free]] counterpart of the [[bistochastic group]] $B_N$. ​+The **free bistochastic quantum groups** are the elements of a sequence $(B_N^+)_{N\in \N}$ of [[compact matrix quantum group|compact matrix quantum groups]] introduced by Banica and Speicher in [(:​ref:​BanSp09)]. Each $B_N^+$ is a [[free_orthogonal_easy_quantum_group|free]] counterpart of the [[bistochastic group]] $B_N$ of the corresponding dimension $N$. 
  
 ===== Definition ===== ===== Definition =====
 +Given $N\in \N$, the **free bistochastic quantum group** $B_N^+$ is the [[compact matrix quantum group]] $(C(B_N^+),​u)$ where $u=(u_{i,​j})_{i,​j=1}^N$ organizes the generators $\{u_{i,​j}\}_{i,​j=1}^N$ of the (unital) [[wp>​Universal_C*-algebra|universal C*-algebra]] ​
 +$$C(B_N^+)\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,​u=\overline u,\, uu^t=u^tu=I_N\otimes 1, \, \forall_{i,​j=1}^N:​ {\textstyle\sum_{k=1}^N} u_{i,​k}={\textstyle\sum_{l=1}^N} u_{l,​j}=1\big\rangle,​$$
 +where $\overline u=(u^\ast_{i,​j})_{i,​j=1}^N$ is the complex conjugate of $u$ and $u^t=(u_{j,​i})_{i,​j=1}^N$ the transpose, where $I_N$ is the identity $N\!\times \!N$-matrix and where $1$ is the unit of the universal $C^\ast$-algebra.
 +
 +The definition can also be expressed by saying that the fundamental corpresentation matrix $u$ of $B_N^+$ is **bistochastic** (or **doubly stochastic**),​ which is to say that $u$ is orthogonal and each of its rows and columns sums to $1$.
 +
 +===== Basic Properties =====
 +
 +The fundamental corepresentation matrix $u$ of $B_N^+$ is in particular //​orthogonal//​. Hence, $B_N^+$ is a compact quantum subgroup of the [[free orthogonal quantum group]] $O_N^+$.
 +
 +If $I$ denotes the closed two-sided ideal of $C(B_N^+)$ generated by the relations $u_{i,​j}u_{k,​l}=u_{k,​l}u_{i,​j}$ for any $i,​j,​k,​l=1,​\ldots,​ N$, then $C(B_N^+)/​I$ is isomorphic to the $C^\ast$-algebra $C(B_N)$ of continuous functions on the [[wp>​bistochastic group]] $B_N$, the subgroup of $\mathrm{GL}(N,​\C)$ given by all [[wp>​doubly stochastic matrix|bistochastic matrices]]. Hence, $B_N^+$ is a compact quantum supergroup of $B_N$.
 +
 +The free bistochastic quantum groups $(B_N^+)_{N\in \N}$ are an [[easy_quantum_group|easy]] family of compact matrix quantum groups, i.e., the intertwiner spaces of their corepresentation categories are induced by a [[category of partitions]]. More precisely, it is the [[category of all non-crossing partitions with small blocks]] that induces the corepresentation categories of $(S_N^+)_{N\in \N}$. Its canonical generating partition is $\singleton$. ​
 +
 +
 +===== Representation theory =====
 +
 +
 +===== Cohomology =====
 +
 +
 +===== Related quantum groups =====
  
 ===== References ===== ===== References =====
Line 14: Line 36:
 volume: ​ 222 volume: ​ 222
 issue: ​  4 issue: ​  4
-pages: ​  ​1461-150+pages: ​  1461--150 
 +url:     ​https://​doi.org/​10.1016/​j.aim.2009.06.009 
 +archivePrefix:​ arXiv 
 +eprint ​  :​0808.2628
 )] )]
free_bistochastic_quantum_group.1577982315.txt.gz · Last modified: 2021/11/23 11:56 (external edit)