User Tools

Site Tools


free_bistochastic_quantum_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
free_bistochastic_quantum_group [2020/01/02 16:44]
amang [Definition]
free_bistochastic_quantum_group [2021/11/23 11:56] (current)
Line 1: Line 1:
 ====== Free bistochastic quantum group ====== ====== Free bistochastic quantum group ======
  
-The **free bistochastic quantum groups** are the elements of a sequence $(B_N^+)_{N\in \N}$ of [[compact matrix quantum group|compact matrix quantum groups]] introduced by Banica and Speicher in [(:​ref:​BanSp09)]. Each $B_N^+$ is a [[free_orthogonal_easy_quantum_group|free]] counterpart of the [[bistochastic group]] $B_N$. ​+The **free bistochastic quantum groups** are the elements of a sequence $(B_N^+)_{N\in \N}$ of [[compact matrix quantum group|compact matrix quantum groups]] introduced by Banica and Speicher in [(:​ref:​BanSp09)]. Each $B_N^+$ is a [[free_orthogonal_easy_quantum_group|free]] counterpart of the [[bistochastic group]] $B_N$ of the corresponding dimension $N$. 
  
 ===== Definition ===== ===== Definition =====
 Given $N\in \N$, the **free bistochastic quantum group** $B_N^+$ is the [[compact matrix quantum group]] $(C(B_N^+),​u)$ where $u=(u_{i,​j})_{i,​j=1}^N$ organizes the generators $\{u_{i,​j}\}_{i,​j=1}^N$ of the (unital) [[wp>​Universal_C*-algebra|universal C*-algebra]] ​ Given $N\in \N$, the **free bistochastic quantum group** $B_N^+$ is the [[compact matrix quantum group]] $(C(B_N^+),​u)$ where $u=(u_{i,​j})_{i,​j=1}^N$ organizes the generators $\{u_{i,​j}\}_{i,​j=1}^N$ of the (unital) [[wp>​Universal_C*-algebra|universal C*-algebra]] ​
-$$C(B_N^+)\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,​\forall_{i,​j=1}^N: ​u_{i,​j}=u_{i,​j}^\ast,​ \, {\textstyle\sum_{k=1}^N u_{i,k}u_{j,​k}={\textstyle\sum_{k=1}^N} u_{k,i}u_{k,j}=1\, {\textstyle\sum_{k=1}^Nu_{i,k}={\textstyle\sum_{l=1}^N} u_{l,j}=1\big\rangle,$$ +$$C(B_N^+)\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert ​\,​u=\overline u,\, uu^t=u^tu=I_N\otimes 1, \, \forall_{i,​j=1}^N:​ {\textstyle\sum_{k=1}^Nu_{i,​k}={\textstyle\sum_{l=1}^N} u_{l,j}=1\big\rangle,$$ 
-where $1$ is the unit of the universal ​$C^\ast$-algebra.+where $\overline u=(u^\ast_{i,j})_{i,j=1}^N$ is the complex conjugate of $u$ and $u^t=(u_{j,i})_{i,j=1}^N$ the transpose, where $I_N$ is the identity $N\!\times \!N$-matrix and where $1$ is the unit of the universal $C^\ast$-algebra. 
 + 
 +The definition can also be expressed by saying that the fundamental corpresentation matrix $u$ of $B_N^+$ is **bistochastic** (or **doubly stochastic**),​ which is to say that $u$ is orthogonal and each of its rows and columns sums to $1$. 
 + 
 +===== Basic Properties ===== 
 + 
 +The fundamental corepresentation matrix $u$ of $B_N^+$ is in particular //​orthogonal//​. Hence, $B_N^+$ is a compact quantum subgroup of the [[free orthogonal quantum group]] $O_N^+$. 
 + 
 +If $I$ denotes the closed two-sided ideal of $C(B_N^+)$ generated by the relations $u_{i,j}u_{k,l}=u_{k,​l}u_{i,j}$ for any $i,j,k,l=1,\ldots, N$, then $C(B_N^+)/​I$ is isomorphic to the $C^\ast$-algebra $C(B_N)$ of continuous functions on the [[wp>​bistochastic group]] $B_N$the subgroup of $\mathrm{GL}(N,​\C)given by all [[wp>​doubly stochastic matrix|bistochastic matrices]]. Hence, $B_N^+$ is a compact quantum supergroup of $B_N$. 
 + 
 +The free bistochastic quantum groups ​$(B_N^+)_{N\in \N}are an [[easy_quantum_group|easy]] family of compact matrix quantum groups, i.e., the intertwiner spaces of their corepresentation categories are induced by a [[category of partitions]]. More precisely, it is the [[category ​of all non-crossing partitions with small blocks]] that induces ​the corepresentation categories of $(S_N^+)_{N\in \N}$. Its canonical generating partition is $\singleton$.  
 + 
 + 
 +===== Representation theory ===== 
 + 
 + 
 +===== Cohomology ===== 
 + 
 + 
 +===== Related quantum groups =====
  
-The definition can also be expressed by saying that the fundamental corpresentation matrix $u$ of $S_N^+$ is **bistochastic** (or **doubly stochastic**),​ which is to say that $u$ is orthogonal and each of its rows and columns sums to $1$. 
 ===== References ===== ===== References =====
  
free_bistochastic_quantum_group.1577983455.txt.gz · Last modified: 2021/11/23 11:56 (external edit)