User Tools

Site Tools


haagerup_property

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
haagerup_property [2019/09/16 07:06]
d.gromada [Stability results]
haagerup_property [2021/11/23 11:56] (current)
Line 15: Line 15:
 A von Neumann algebra $M$ equipped with a faithful normal trace $\tau$ is said to have the **Haagerup property** if there exists a net of $\tau$-preserving unital completely positive maps $\theta_i$ on $M$ such that each $\theta_i$ extends to a compact operator on $L^2(M,​\tau)$ and $\theta_i\to\id_M$ in the point-ultraweak topology. A von Neumann algebra $M$ equipped with a faithful normal trace $\tau$ is said to have the **Haagerup property** if there exists a net of $\tau$-preserving unital completely positive maps $\theta_i$ on $M$ such that each $\theta_i$ extends to a compact operator on $L^2(M,​\tau)$ and $\theta_i\to\id_M$ in the point-ultraweak topology.
  
-An unimodular discrete quantum group $\Gamma$ has the Haagerup property if and only if $L^\infty(\hat\Gamma)$ has the Haagerup property.+An [[unimodularity|unimodular]] discrete quantum group $\Gamma$ has the Haagerup property if and only if $L^\infty(\hat\Gamma)$ has the Haagerup property.
  
  
Line 22: Line 22:
 ==== Stability results ==== ==== Stability results ====
  
-  * If $\hat G[[unimodularity|unimodular]] ​has Haagerup property, then also $\widehat{G\tilstar\Z}$ has Haagerup property [(ref:Bra11)]+  * If $\Gamma$ has the Haagerup property, then any quantum subgroup of $\Gamma$ has the Haagerup property. [(ref:​DFSW13)] 
 +  * Let $G$ be a CQG, $H\subset G$ a finite index subgroup (i.e. $C(G/H):=\{a\in C_{\rm u}(G)\mid (\id\otimes p)\Delta(a)=a\otimes 1\}$, where $p$ is the surjection $C_{\rm u}(G)\to C_{\rm u}(H)$, is finite dimensional). If $\hat H$ has the Haagerup property, then $\hat G$ has the Haagerup property. [(ref:​FMP17)] 
 +  * Free product $\Gamma_1*\Gamma_2$ has the Haagerup property if and only if both $\Gamma_1$ and $\Gamma_2$ have the Haagerup property [(ref:DFSW13)]
  
  
 ==== Examples ==== ==== Examples ====
  
 +  * Any finite quantum group
 +  * Coxeter groups
 +  * $\mathbb{F}_n$ [(ref:​Haa78)],​ $\mathrm{SL}_2(\Z)$
   * $\hat O_N^+$, $\hat U_N^+$ [(ref:​Bra11)]   * $\hat O_N^+$, $\hat U_N^+$ [(ref:​Bra11)]
 +  * $\hat O_F^+$, $\hat U_F^+$ [(ref:​DFY14)]
 +  * $S_N^+$, $H_N^{s+}$ [(ref:​Lem15)]
  
  
Line 34: Line 41:
 ===== Relation with other properties ===== ===== Relation with other properties =====
  
-If $\Gamma=\hat G$ has Haagerup property, then +If $\Gamma=\hat G$ has the Haagerup property, then
-...+
  
-Discrete quantum group $\Gamma=\hat ​G$ has (Tif+    * $L^\infty(G)$ has the Haagerup approximation property [(ref:DFSW13)]
  
-    * $\Gamma$ ​is [[Amenability|amenable]]+Discrete quantum group $\Gamma=\hat Ghas the Haagerup property if
  
 +    * $\Gamma$ is [[Amenability|amenable]] [(ref:​DFSW13)]
  
 +Discrete quantum group $\Gamma$ has the Haagerup property and [[kazhdan_property|property (T)]] if and only if $\Gamma$ is [[compact_quantum_group#​Finite quantum groups|finite]] ​ [(ref:​DFSW13)].
 ===== Further reading ===== ===== Further reading =====
  
 +  * Michael Brannan. //​[[https://​arxiv.org/​abs/​1605.01770|Approximation properties for locally compact quantum groups]]//, 2016.
   * Nathanial P. Brown and Narutaka Ozawa, //​C*-algebras and Finite-Dimensional Approximations//,​ [[https://​bookstore.ams.org/​gsm-88|American Mathematical Society]], 2008.   * Nathanial P. Brown and Narutaka Ozawa, //​C*-algebras and Finite-Dimensional Approximations//,​ [[https://​bookstore.ams.org/​gsm-88|American Mathematical Society]], 2008.
  
Line 82: Line 91:
 volume ​   : 48 volume ​   : 48
 year      : 2002 year      : 2002
 +)]
 +
 +[(ref:​Haa78>>​
 +author ​   : Uffe Haagerup
 +title     : An example of a non nuclearC*-algebra,​ which has the metric approximation property
 +journal ​  : Inventiones mathematicae
 +year      : 1978
 +volume ​   : 50
 +number ​   : 3
 +pages     : 279–293
 +doi       : 10.1007/​BF01410082
 +url       : https://​doi.org/​10.1007/​BF0141008
 +)]
 +
 +[(ref:​Fre13>>​
 +title     : Examples of weakly amenable discrete quantum groups
 +journal ​  : Journal of Functional Analysis
 +volume ​   : 265
 +number ​   : 9
 +pages     : 2164--2187
 +year      : 2013
 +doi       : 10.1016/​j.jfa.2013.05.037
 +url       : http://​www.sciencedirect.com/​science/​article/​pii/​S0022123613002127
 +author ​   : Amaury Freslon
 +)]
 +
 +[(ref:​Lem15>>​
 +title     : Haagerup approximation property for quantum reflection groups
 +journal ​  : Proceedings of the Americal Mathematical Society
 +volume ​   : 143
 +pages     : 2017–2031
 +year      : 2015
 +doi       : 10.1090/​S0002-9939-2015-12402-1 ​
 +url       : http://​dx.doi.org/​10.1090/​S0002-9939-2015-12402-1 ​
 +author ​   : François Lemeux
 +)]
 +
 +[(ref:​DFY14>>​
 +author ​   : Kenny De Commer, Amaury Freslon, Makoto Yamashita
 +title     : CCAP for Universal Discrete Quantum Groups
 +journal ​  : Communications in Mathematical Physics
 +year      : 2014
 +volume ​   : 331
 +number ​   : 2
 +pages     : 677–701
 +doi       : 10.1007/​s00220-014-2052-7
 +url       : https://​doi.org/​10.1007/​s00220-014-2052-7
 +)]
 +
 +
 +[(ref:​FMP17>>​
 +title     : On compact bicrossed products
 +journal ​  : Journal of Noncommutative Geometry
 +volume ​   : 11
 +number ​   : 4
 +pages     : 1521--1591
 +year      : 2017
 +doi       : 10.4171/​JNCG/​11-4-10
 +url       : http://​dx.doi.org/​10.4171/​JNCG/​11-4-10
 +author ​   : Pierre Fima, Kunal Mukherjee and Issan Patri
 )] )]
  
 ~~REFNOTES ref ~~ ~~REFNOTES ref ~~
haagerup_property.1568617616.txt.gz · Last modified: 2021/11/23 11:56 (external edit)