User Tools

Site Tools


haagerup_property

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
haagerup_property [2019/09/17 08:30]
d.gromada
haagerup_property [2021/11/23 11:56] (current)
Line 22: Line 22:
 ==== Stability results ==== ==== Stability results ====
  
 +  * If $\Gamma$ has the Haagerup property, then any quantum subgroup of $\Gamma$ has the Haagerup property. [(ref:​DFSW13)]
 +  * Let $G$ be a CQG, $H\subset G$ a finite index subgroup (i.e. $C(G/​H):​=\{a\in C_{\rm u}(G)\mid (\id\otimes p)\Delta(a)=a\otimes 1\}$, where $p$ is the surjection $C_{\rm u}(G)\to C_{\rm u}(H)$, is finite dimensional). If $\hat H$ has the Haagerup property, then $\hat G$ has the Haagerup property. [(ref:​FMP17)]
   * Free product $\Gamma_1*\Gamma_2$ has the Haagerup property if and only if both $\Gamma_1$ and $\Gamma_2$ have the Haagerup property [(ref:​DFSW13)]   * Free product $\Gamma_1*\Gamma_2$ has the Haagerup property if and only if both $\Gamma_1$ and $\Gamma_2$ have the Haagerup property [(ref:​DFSW13)]
-  * If $\Gamma$ [[unimodularity|unimodular]] has Haagerup property, then also $\hat G\tilstar\Z$ has Haagerup property [(ref:​Bra11)] 
  
  
Line 29: Line 30:
  
   * Any finite quantum group   * Any finite quantum group
 +  * Coxeter groups
   * $\mathbb{F}_n$ [(ref:​Haa78)],​ $\mathrm{SL}_2(\Z)$   * $\mathbb{F}_n$ [(ref:​Haa78)],​ $\mathrm{SL}_2(\Z)$
   * $\hat O_N^+$, $\hat U_N^+$ [(ref:​Bra11)]   * $\hat O_N^+$, $\hat U_N^+$ [(ref:​Bra11)]
Line 39: Line 41:
 ===== Relation with other properties ===== ===== Relation with other properties =====
  
-If $\Gamma=\hat G$ has Haagerup property, then+If $\Gamma=\hat G$ has the Haagerup property, then
  
-    * $L^\infty(G)$ has the Haagerup approximation property+    * $L^\infty(G)$ has the Haagerup approximation property ​[(ref:​DFSW13)]
  
-Discrete quantum group $\Gamma=\hat G$ has (T) if +Discrete quantum group $\Gamma=\hat G$ has the Haagerup property ​if
- +
-    * $\Gamma$ is [[Amenability|amenable]]+
  
 +    * $\Gamma$ is [[Amenability|amenable]] [(ref:​DFSW13)]
  
 +Discrete quantum group $\Gamma$ has the Haagerup property and [[kazhdan_property|property (T)]] if and only if $\Gamma$ is [[compact_quantum_group#​Finite quantum groups|finite]] ​ [(ref:​DFSW13)].
 ===== Further reading ===== ===== Further reading =====
  
 +  * Michael Brannan. //​[[https://​arxiv.org/​abs/​1605.01770|Approximation properties for locally compact quantum groups]]//, 2016.
   * Nathanial P. Brown and Narutaka Ozawa, //​C*-algebras and Finite-Dimensional Approximations//,​ [[https://​bookstore.ams.org/​gsm-88|American Mathematical Society]], 2008.   * Nathanial P. Brown and Narutaka Ozawa, //​C*-algebras and Finite-Dimensional Approximations//,​ [[https://​bookstore.ams.org/​gsm-88|American Mathematical Society]], 2008.
  
Line 135: Line 138:
 doi       : 10.1007/​s00220-014-2052-7 doi       : 10.1007/​s00220-014-2052-7
 url       : https://​doi.org/​10.1007/​s00220-014-2052-7 url       : https://​doi.org/​10.1007/​s00220-014-2052-7
 +)]
 +
 +
 +[(ref:​FMP17>>​
 +title     : On compact bicrossed products
 +journal ​  : Journal of Noncommutative Geometry
 +volume ​   : 11
 +number ​   : 4
 +pages     : 1521--1591
 +year      : 2017
 +doi       : 10.4171/​JNCG/​11-4-10
 +url       : http://​dx.doi.org/​10.4171/​JNCG/​11-4-10
 +author ​   : Pierre Fima, Kunal Mukherjee and Issan Patri
 )] )]
  
 ~~REFNOTES ref ~~ ~~REFNOTES ref ~~
haagerup_property.1568709056.txt.gz · Last modified: 2021/11/23 11:56 (external edit)