User Tools

Site Tools


higher_hyperoctahedral_series

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
higher_hyperoctahedral_series [2020/02/05 10:25]
amang [Definition]
higher_hyperoctahedral_series [2021/11/23 11:56] (current)
Line 1: Line 1:
 ====== Higher hyperoctahedral series ====== ====== Higher hyperoctahedral series ======
  
-The **higher hyperoctahedral series** is a family $(H_N^{[s]})_{N,s\in \N,\,s\geq 3}$ of [[compact matrix quantum group|compact matrix quantum groups]] introduced by Banica, Curran and Speicher in [(:​ref:​BanCuSp10)]. Each $H_N^{[s]}$ interpolates the quantum group $H_N^{(s)}$ ​ of the [[hyperoctahedral series]] with parameter $s$ and the [[free hyperoctahedral quantum group]] $H_N^{+}$, both of the corresponding dimension $N$.+The **higher hyperoctahedral series** is a family $(H_N^{[s]})_{N\in \N,\,s\in\{3,​\ldots,​\infty\}}$ of [[compact matrix quantum group|compact matrix quantum groups]] introduced by Banica, Curran and Speicher in [(:​ref:​BanCuSp10)]. Each $H_N^{[s]}$ interpolates the quantum group $H_N^{(s)}$ ​ of the [[hyperoctahedral series]] with parameter $s$ and the [[free hyperoctahedral quantum group]] $H_N^{+}$, both of the corresponding dimension $N$.
  
 ===== Definition ===== ===== Definition =====
-Given $N\in \N$ and $s\in\N$ with $s\geq 3$, the **quantum group** ​ $H_N^{[s]}$ **of the hyperoctahedral series with parameter** $s$ **for dimension** $N$ is the [[compact matrix quantum group]] $(C(H_N^{[s]}),​u)$ where $u=(u_{i,​j})_{i,​j=1}^N$ organizes the generators $\{u_{i,​j}\}_{i,​j=1}^N$ of the (unital) [[wp>​Universal_C*-algebra|universal C*-algebra]] ​+Given $N\in \N$ and $s\in\N\cup\{\infty\}$ with $s\geq 3$, the **quantum group** ​ $H_N^{[s]}$ **of the hyperoctahedral series with parameter** $s$ **for dimension** $N$ is the [[compact matrix quantum group]] $(C(H_N^{[s]}),​u)$ where $u=(u_{i,​j})_{i,​j=1}^N$ organizes the generators $\{u_{i,​j}\}_{i,​j=1}^N$ of the (unital) [[wp>​Universal_C*-algebra|universal C*-algebra]] ​
 $$C(H_N^{[s]})\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,​u=\overline u, \, uu^t=u^tu=I_N\otimes 1\,$$ $$C(H_N^{[s]})\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,​u=\overline u, \, uu^t=u^tu=I_N\otimes 1\,$$
 $${\color{white}C(H_N^{(s)})\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,​}\forall_{i,​j,​k=1}^N:​ i\neq j\Rightarrow u_{i,​k}u_{j,​k}=u_{k,​i}u_{k,​j}=0,​$$ $${\color{white}C(H_N^{(s)})\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,​}\forall_{i,​j,​k=1}^N:​ i\neq j\Rightarrow u_{i,​k}u_{j,​k}=u_{k,​i}u_{k,​j}=0,​$$
-$${\color{white}C(H_N^{(s)})\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,}\forall a,b\in \{u_{i,​j}\}_{i,​j=1}^n:​ (s\text{ odd} \Rightarrow (ab)^{\frac{s-1}{2}}a=(ba)^{\frac{s-1}{2}}b),​\,​ (s\text{ even}\Rightarrow (ab)^{\frac{s}{2}}=(ba)^{\frac{s}{2}})\big\rangle,​$$+$${\color{white}C(H_N^{(s)})\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,}\forall_{i,​j,​k,​l=1}^N:​ u_{i,​j}^2u_{k,​l}=u_{k,​l}u_{i,​j}^2,​$$ 
 +$${\color{white}C(H_N^{(s)})\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,​}s<​\infty \Rightarrow ​\forall a,b\in \{u_{i,​j}\}_{i,​j=1}^n: ​$$ 
 +$${\color{white}C(H_N^{(s)})\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,}(s\text{ odd} \Rightarrow (ab)^{\frac{s-1}{2}}a=(ba)^{\frac{s-1}{2}}b),​\,​ (s\text{ even}\Rightarrow (ab)^{\frac{s}{2}}=(ba)^{\frac{s}{2}})\big\rangle,​$$
 where $\overline u=(u^\ast_{i,​j})_{i,​j=1}^N$ is the complex conjugate of $u$ and $u^t=(u_{j,​i})_{i,​j=1}^N$ the transpose, where $I_N$ is the identity $N\!\times \!N$-matrix and where $1$ is the unit of the universal $C^\ast$-algebra. where $\overline u=(u^\ast_{i,​j})_{i,​j=1}^N$ is the complex conjugate of $u$ and $u^t=(u_{j,​i})_{i,​j=1}^N$ the transpose, where $I_N$ is the identity $N\!\times \!N$-matrix and where $1$ is the unit of the universal $C^\ast$-algebra.
  
-The definition can also be expressed by saying that the fundamental corpresentation matrix $u$ of $H_N^{[s]}$ is **cubic** and satisfies the $s$**-mixing relations**. In particular, $u$ satisfies the **ultracubic relations**,​ which is to say $u_{i,​j}u_{l,​m}u_{i,​k}=u_{k,​i}u_{l,​m}u_{k,​j}=0$ for all $i,​j,​k,​l,​m=1,​\ldots,​N$.+If $s<​\infty$,​ the definition can also be expressed by saying that the fundamental corpresentation matrix $u$ of $H_N^{[s]}$ is **cubic** and satisfies the $s$**-mixing relations**. In particular, $u$ satisfies the **ultracubic relations**,​ which is to say $u_{i,​j}u_{l,​m}u_{i,​k}=u_{k,​i}u_{l,​m}u_{k,​j}=0$ for all $i,​j,​k,​l,​m=1,​\ldots,​N$.
  
 Had one allowed $s=2$ in the definition, one would have obtained the [[hyperoctahedral group|hyperoctahedral group]] $H_N^{[2]}\colon\hspace{-0.66em}=H_N$. ​ Had one allowed $s=2$ in the definition, one would have obtained the [[hyperoctahedral group|hyperoctahedral group]] $H_N^{[2]}\colon\hspace{-0.66em}=H_N$. ​
  
-Sometimes, the [[free hyperoctahedral quantum group]] $H_N^{+}$ is considered an element of the higher hyperoctahedral series via the definition $H_N^{[\infty]}\colon\hspace{-0.66em}= H_N^{+}$. +The quantum groups of the higher hyperoctahedral series are [[group-theoretical_hyperoctahedral_easy_orthogonal_quantum_groups|group-theoretical hyperoctahedral orthogonal easy quantum groups]] and can therefore be written as a [[semi-direct product]] with its [[diagonal subgroup of a compact matrix quantum group|diagonal subgroup]] [(:​ref:​RaWe15)]: ​ 
- +$$C(H_N^{[s]})\cong C^\ast\langle \{a_i\}_{i=1}^n \,\vert\, \forall_{i,​j=1}^n:​ a_i^2=1,​\, ​s<​\infty\Rightarrow ​(a_ia_j)^s=1\rangle\bowtie C(S_N)$$ 
-The quantum groups of the higher hyperoctahedral series are [[group-theoretical hyperoctahedral orthogonal easy quantum groups]] and can therefore be written as a [[semi-direct product]] with its [[diagonal subgroup of a compact matrix quantum group|diagonal subgroup]] [(:​ref:​RaWe15)]:​ $$C(H_N^{[s]})\cong C^\ast\langle \{a_i\}_{i=1}^n \,\vert\, \forall_{i,​j=1}^n:​ a_i^2=1,\, (a_ia_j)^s=1\rangle\bowtie C(S_N)$$ +for all $N\in \N$ and $s\in\N\cup\{\infty\}$ with $3\leq s$, where $C(S_N)$ denotes the continuous functions over the symmetric group of dimension $N$ (considered as the subgroup of $\mathrm{GL}(\C,​N)$ given by all [[wp>​permutation matrices]]).
-for all $s,N\in \N$ with $s\geq 3$, where $C(S_N)$ denotes the continuous functions over the symmetric group of dimension $N$ (considered as the subgroup of $\mathrm{GL}(\C,​N)$ given by all [[wp>​permutation matrices]]).+
  
 ===== Basic Properties ===== ===== Basic Properties =====
Line 25: Line 26:
 Moreover, $u$ is also //cubic// especially, implying that $H_N^{[s]}$ is a compact quantum subgroup of the [[free hyperoctahedral quantum group]] $H_N^{+}$, the free counterpart of the hyperoctahedral group $H_N$. Moreover, $u$ is also //cubic// especially, implying that $H_N^{[s]}$ is a compact quantum subgroup of the [[free hyperoctahedral quantum group]] $H_N^{+}$, the free counterpart of the hyperoctahedral group $H_N$.
  
-If $I$ denotes the closed two-sided ideal of $C(H_N^{[s]})$ generated by the relations $u_{i,​j}u_{k,​l}=u_{k,​l}u_{i,​j}$ for any $i,​j,​k,​l=1,​\ldots,​ N$, then $C(H_N^{[s]})/​I$ is isomorphic to the $C^\ast$-algebra $C(H_N)$ of continuous functions on the [[wp>hyperoctahedral group]] $H_N$, the subgroup ​ of $\mathrm{GL}(N,​\C)$ given by orthogonal matrices with integer entries. Hence, $H_N^{[s]}$ is a compact quantum supergroup of $H_N$.+If $I$ denotes the closed two-sided ideal of $C(H_N^{[s]})$ generated by the relations $u_{i,​j}u_{k,​l}=u_{k,​l}u_{i,​j}$ for any $i,​j,​k,​l=1,​\ldots,​ N$, then $C(H_N^{[s]})/​I$ is isomorphic to the $C^\ast$-algebra $C(H_N)$ of continuous functions on the [[hyperoctahedral group]] $H_N$, the subgroup ​ of $\mathrm{GL}(N,​\C)$ given by orthogonal matrices with integer entries. Hence, $H_N^{[s]}$ is a compact quantum supergroup of $H_N$.
  
 Similarly, if $J$ is the closed two-sided ideal of $C(H_N^{[s]})$ generated by the relations $acb=bca$ for any $a,b,c\in \{u_{i,​j}\}_{i,​j=1}^N$,​ then $C(H_N^{[s]})/​J$ is isomorphic to the $C^\ast$-algebra $C(H_N^\ast)$ of the [[half-liberated hyperoctahedral quantum group]] $H_N^\ast$. Hence, $H_N^{[s]}$ is a compact quantum supergroup of $H_N^\ast$. Similarly, if $J$ is the closed two-sided ideal of $C(H_N^{[s]})$ generated by the relations $acb=bca$ for any $a,b,c\in \{u_{i,​j}\}_{i,​j=1}^N$,​ then $C(H_N^{[s]})/​J$ is isomorphic to the $C^\ast$-algebra $C(H_N^\ast)$ of the [[half-liberated hyperoctahedral quantum group]] $H_N^\ast$. Hence, $H_N^{[s]}$ is a compact quantum supergroup of $H_N^\ast$.
  
  
-For every $s\in \N$ with $s\geq 3$ the quantum groups $(H_N^{[s]})_{N\in \N}$ of the higher hyperoctahedral series with parameter $s$ are an [[easy_quantum_group|easy]] family of compact matrix quantum groups, i.e., the intertwiner spaces of their corepresentation categories are induced by a [[category of partitions]]. More precisely, it is a [[group-theoretical hyperoctahedral categories of partitions|group-theoretical hyperoctahedral category of partitions]] that induces the corepresentation categories of $(H_N^{[s]})_{N\in \N}$. Canonically,​ it is generated by the set $\{\fourpart,​h_s\}of partitions ​[(:​ref:​RaWe14)], ​where $h_s$ is the partition whose [[partition#​word_representation|word representation]] is given by $(ab)^s$. See also [[categories of the higher hyperoctahedral series]].+For every $s\in \N$ with $s\geq 3$ the quantum groups $(H_N^{[s]})_{N\in \N}$ of the higher hyperoctahedral series with parameter $s$ are an [[easy_quantum_group|easy]] family of compact matrix quantum groups, i.e., the intertwiner spaces of their corepresentation categories are induced by a [[category of partitions]]. More precisely, it is a [[group-theoretical hyperoctahedral categories of partitions|group-theoretical hyperoctahedral category of partitions]] that induces the corepresentation categories of $(H_N^{[s]})_{N\in \N}$. Canonically, if $s<​\infty$, it is generated by $h_s$  [(:​ref:​RaWe14)],​ the partition whose [[partition#​word_representation|word representation]] is given by $(\mathsf{ab})^s$. See also [[categories of the higher hyperoctahedral series]]. The corepresentation categories of $(H_N^{[\infty]})_{N\in\N}$ are induced by $\Paabaab$.
  
  
higher_hyperoctahedral_series.1580898315.txt.gz · Last modified: 2021/11/23 11:56 (external edit)