User Tools

Site Tools


kazhdan_property

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
kazhdan_property [2019/09/06 12:20]
d.gromada created
kazhdan_property [2021/11/23 11:56] (current)
Line 1: Line 1:
 ====== Kazhdan property (T) ====== ====== Kazhdan property (T) ======
 +
 +This property was originally formulated by David Kazhdan for locally compact groups (see [[wp>​Kazhdan'​s_property_(T)|Kazhdan'​s property (T)]]). This article is about its generalization to the quantum group setting.
  
 ===== Definition ===== ===== Definition =====
Line 5: Line 7:
 The definition of Kazhdan property (T) for discrete quantum groups was formulated in [(ref:​Fim10)]. The definition of Kazhdan property (T) for discrete quantum groups was formulated in [(ref:​Fim10)].
  
-Let $G$ be a compact quantum group, $X\subset\Irr(G)$,​ and $\pi\colon C(G)\to B(H)$ a $$-representation on a Hilbert space $H$. For $x\in\Irr(G)$,​ denote $u^x$ its representative acting on $H_x$ and put $U^x:= (\id\otimes\pi)u^x\in B(H_x)\otimes B(H)$.+Let $G$ be a compact quantum group, $X\subset\Irr(G)$,​ and $\pi\colon C(G)\to B(H)$ a $*$-representation on a Hilbert space $H$. For $x\in\Irr(G)$,​ denote $u^x$ its representative acting on $H_x$ and put $U^x:​=(\id\otimes\pi)u^x\in B(H_x)\otimes B(H)$.
  
-For $\epsilon>​0$ we say that the unit vector $v\in H$ is $(X,​\epsilon)$-invariant if for all $x\in X$ and all +For $\epsilon>​0$ we say that the unit vector $v\in H$ is $(X,​\epsilon)$**-invariant** if for all $x\in X$ and all non-zero $\eta\in H_x$ we have
-non-zero $\eta\in H_x$ we have+
 $$\|U^x(\eta\otimes v) − (\eta\otimes v)\| < \epsilon\|\eta\|.$$ $$\|U^x(\eta\otimes v) − (\eta\otimes v)\| < \epsilon\|\eta\|.$$
  
-We say the representation $\pi$ almost ​contains invariant vectors if there are $(X,​\epsilon)$-invariant+We say the representation $\pi$ **contains ​almost ​invariant vectors** if there are $(X,​\epsilon)$-invariant
 vectors for all finite subsets $X\subset\Irr(G)$ and all $\epsilon>​0$. vectors for all finite subsets $X\subset\Irr(G)$ and all $\epsilon>​0$.
  
-We say that $\Gamma=\hat G$ has **property (T)** if every representation $\pi$ almost ​containing ​an invariant vector contains an invariant vector, that is, there is $v\in H$ such that+We say that $\Gamma=\hat G$ has **property (T)** if every representation $\pi$ containing ​almost ​invariant vector contains an invariant vector, that is, there is $v\in H$ such that
 $$U^x(\eta\otimes v) = \eta\otimes v$$ $$U^x(\eta\otimes v) = \eta\otimes v$$
 for all $x\in\Irr(G)$ and all $\eta\in H_x$. for all $x\in\Irr(G)$ and all $\eta\in H_x$.
 +
 +===== Results =====
 +
 +==== Stability results ====
 +
 +
 +    * Suppose $H\subset G$. If $\hat G$ has (T), then also $\hat H$ has (T). [(ref:​Fim10)]
 +
 +==== Examples ====
 +
 +The following quantum groups have the property (T).
 +
 +The following quantum groups do not have the property (T).
 +
 +    * $\hat O_N^+$ for $N\ge 2$ (since $\Z_2^{*N}$ does not have (T)) [(ref:​Fim10)]
 +    * $\hat U_N^+$ for $N\ge 2$ (since the free group $\mathbb{F}_N$ does not have (T)) [(ref:​Fim10)]
 +    * $\hat S_N^+$ for $N\ge 2$ [(ref:​Fim10)]
 +    * Any free group
 +    * Any infinite Abelian discrete quantum group (since it is [[amenability|amenable]])
 +
 +
 +
 +===== Relation with other properties =====
 +
 +If $\Gamma=\hat G$ has (T), then
 +
 +    * $\Gamma$ is finitely generated [(ref:​Fim10)]
 +    * $\Gamma$ is [[Unimodularity|unimodular]] [(ref:​Fim10)]
 +
 +Discrete quantum group $\Gamma=\hat G$ has (T) if...
 +
 +Discrete quantum group $\Gamma$ has the [[haagerup_property|Haagerup property]] and property (T) if and only if $\Gamma$ is [[compact_quantum_group#​Finite quantum groups|finite]] ​ [(ref:​DFSW13)].
  
 ===== References ===== ===== References =====
Line 28: Line 61:
 )] )]
  
-[(ref:​BCF18>>​ 
-title     : Topological generation and matrix models for quantum reflection groups 
-year      : 2018 
-author ​   : Michael Brannan, Alexandru Chirvasitu, Amaury Freslon 
-url       : https://​arxiv.org/​abs/​1808.08611 
-)] 
  
-[(ref:Chi15>> +[(ref:DFSW13>> 
-title     : ​Residually finite ​quantum ​group algebras +author ​   : Matthew Daws, Pierre Fima, Adam Skalski, Stuart White 
-journal ​  : Journal ​of Functional Analysis +title     : ​The Haagerup property for locally compact ​quantum ​groups 
-volume ​   : 268 +journal ​  : Journal ​für die reine und angewandte Mathematik 
-number ​   : 11 +volume ​   : 2016 
-pages     : ​35083533 +number ​   : 711 
-year      : 2015 +pages     : ​189229 
-doi       : ​https://​doi.org/​10.1016/j.jfa.2015.01.013 +year      : 2013 
-url       : ​http://www.sciencedirect.com/science/​article/​pii/​S0022123615000373 +doi       : 10.1515/crelle-2013-0113 
-author ​   : Alexandru Chirvasitu+url       : ​https://doi.org/10.1515/crelle-2013-0113
 )] )]
  
Line 59: Line 86:
 )] )]
  
-[(ref:​Sol05>>​ 
-author ​   : Piotr M. Sołtan 
-doi       : 10.1215/​ijm/​1258138137 
-journal ​  : Illinois Journal of Mathematics 
-number ​   : 4 
-pages     : 1245–1270 
-publisher : Duke University Press 
-title     : Quantum Bohr compactification 
-url       : https://​doi.org/​10.1215/​ijm/​1258138137 
-volume ​   : 49 
-year      : 2005 
-)] 
  
 ~~REFNOTES ref ~~ ~~REFNOTES ref ~~
  
kazhdan_property.1567772404.txt.gz · Last modified: 2021/11/23 11:56 (external edit)