User Tools

Site Tools


kazhdan_property

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
kazhdan_property [2019/09/09 09:12]
d.gromada
kazhdan_property [2021/11/23 11:56] (current)
Line 7: Line 7:
 The definition of Kazhdan property (T) for discrete quantum groups was formulated in [(ref:​Fim10)]. The definition of Kazhdan property (T) for discrete quantum groups was formulated in [(ref:​Fim10)].
  
-Let $G$ be a compact quantum group, $X\subset\Irr(G)$,​ and $\pi\colon C(G)\to B(H)$ a $*$-representation on a Hilbert space $H$. For $x\in\Irr(G)$,​ denote $u^x$ its representative acting on $H_x$ and put $U^x:= (\id\otimes\pi)u^x\in B(H_x)\otimes B(H)$.+Let $G$ be a compact quantum group, $X\subset\Irr(G)$,​ and $\pi\colon C(G)\to B(H)$ a $*$-representation on a Hilbert space $H$. For $x\in\Irr(G)$,​ denote $u^x$ its representative acting on $H_x$ and put $U^x:​=(\id\otimes\pi)u^x\in B(H_x)\otimes B(H)$.
  
 For $\epsilon>​0$ we say that the unit vector $v\in H$ is $(X,​\epsilon)$**-invariant** if for all $x\in X$ and all non-zero $\eta\in H_x$ we have For $\epsilon>​0$ we say that the unit vector $v\in H$ is $(X,​\epsilon)$**-invariant** if for all $x\in X$ and all non-zero $\eta\in H_x$ we have
Line 20: Line 20:
  
 ===== Results ===== ===== Results =====
 +
 +==== Stability results ====
 +
 +
 +    * Suppose $H\subset G$. If $\hat G$ has (T), then also $\hat H$ has (T). [(ref:​Fim10)]
 +
 +==== Examples ====
 +
 +The following quantum groups have the property (T).
 +
 +The following quantum groups do not have the property (T).
 +
 +    * $\hat O_N^+$ for $N\ge 2$ (since $\Z_2^{*N}$ does not have (T)) [(ref:​Fim10)]
 +    * $\hat U_N^+$ for $N\ge 2$ (since the free group $\mathbb{F}_N$ does not have (T)) [(ref:​Fim10)]
 +    * $\hat S_N^+$ for $N\ge 2$ [(ref:​Fim10)]
 +    * Any free group
 +    * Any infinite Abelian discrete quantum group (since it is [[amenability|amenable]])
 +
 +
  
 ===== Relation with other properties ===== ===== Relation with other properties =====
Line 26: Line 45:
  
     * $\Gamma$ is finitely generated [(ref:​Fim10)]     * $\Gamma$ is finitely generated [(ref:​Fim10)]
-    * $\Gamma$ is of Kac type [(ref:​Fim10)] +    * $\Gamma$ is [[Unimodularity|unimodular]] ​[(ref:​Fim10)]
- +
-Discrete quantum group $\Gamma=\hat G$ has (T) if +
  
 +Discrete quantum group $\Gamma=\hat G$ has (T) if...
  
 +Discrete quantum group $\Gamma$ has the [[haagerup_property|Haagerup property]] and property (T) if and only if $\Gamma$ is [[compact_quantum_group#​Finite quantum groups|finite]] ​ [(ref:​DFSW13)].
  
 ===== References ===== ===== References =====
Line 41: Line 59:
 author ​   : Angshuman Bhattacharya,​ Michael Brannan, Alexandru Chirvasitu, Shuzhou Wang author ​   : Angshuman Bhattacharya,​ Michael Brannan, Alexandru Chirvasitu, Shuzhou Wang
 url       : https://​arxiv.org/​abs/​1712.08682 url       : https://​arxiv.org/​abs/​1712.08682
 +)]
 +
 +
 +[(ref:​DFSW13>>​
 +author ​   : Matthew Daws, Pierre Fima, Adam Skalski, Stuart White
 +title     : The Haagerup property for locally compact quantum groups
 +journal ​  : Journal für die reine und angewandte Mathematik
 +volume ​   : 2016
 +number ​   : 711
 +pages     : 189–229
 +year      : 2013
 +doi       : 10.1515/​crelle-2013-0113
 +url       : https://​doi.org/​10.1515/​crelle-2013-0113
 )] )]
  
kazhdan_property.1568020362.txt.gz · Last modified: 2021/11/23 11:56 (external edit)