This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
kazhdan_property [2019/09/27 16:30] d.gromada [Results] |
kazhdan_property [2021/11/23 11:56] (current) |
||
---|---|---|---|
Line 35: | Line 35: | ||
* $\hat U_N^+$ for $N\ge 2$ (since the free group $\mathbb{F}_N$ does not have (T)) [(ref:Fim10)] | * $\hat U_N^+$ for $N\ge 2$ (since the free group $\mathbb{F}_N$ does not have (T)) [(ref:Fim10)] | ||
* $\hat S_N^+$ for $N\ge 2$ [(ref:Fim10)] | * $\hat S_N^+$ for $N\ge 2$ [(ref:Fim10)] | ||
+ | * Any free group | ||
+ | * Any infinite Abelian discrete quantum group (since it is [[amenability|amenable]]) | ||
Line 45: | Line 47: | ||
* $\Gamma$ is [[Unimodularity|unimodular]] [(ref:Fim10)] | * $\Gamma$ is [[Unimodularity|unimodular]] [(ref:Fim10)] | ||
- | Discrete quantum group $\Gamma=\hat G$ has (T) if | + | Discrete quantum group $\Gamma=\hat G$ has (T) if... |
- | + | ||
+ | Discrete quantum group $\Gamma$ has the [[haagerup_property|Haagerup property]] and property (T) if and only if $\Gamma$ is [[compact_quantum_group#Finite quantum groups|finite]] [(ref:DFSW13)]. | ||
===== References ===== | ===== References ===== | ||
Line 58: | Line 59: | ||
author : Angshuman Bhattacharya, Michael Brannan, Alexandru Chirvasitu, Shuzhou Wang | author : Angshuman Bhattacharya, Michael Brannan, Alexandru Chirvasitu, Shuzhou Wang | ||
url : https://arxiv.org/abs/1712.08682 | url : https://arxiv.org/abs/1712.08682 | ||
+ | )] | ||
+ | |||
+ | |||
+ | [(ref:DFSW13>> | ||
+ | author : Matthew Daws, Pierre Fima, Adam Skalski, Stuart White | ||
+ | title : The Haagerup property for locally compact quantum groups | ||
+ | journal : Journal für die reine und angewandte Mathematik | ||
+ | volume : 2016 | ||
+ | number : 711 | ||
+ | pages : 189–229 | ||
+ | year : 2013 | ||
+ | doi : 10.1515/crelle-2013-0113 | ||
+ | url : https://doi.org/10.1515/crelle-2013-0113 | ||
)] | )] | ||