User Tools

Site Tools


modified_bistochastic_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
modified_bistochastic_group [2020/02/14 07:11]
amang [Basic properties]
modified_bistochastic_group [2021/11/23 11:56] (current)
Line 1: Line 1:
 ====== Modified bistochastic group ====== ====== Modified bistochastic group ======
  
-A **modified bistochastic group** is any member of a certain sequence $(B_N'​)_{N\in \N}$ of [[classical matrix groups]].+A **modified bistochastic group** is any member of a certain sequence $(B_N'​)_{N\in \N}$ of [[classical ​orthogonal ​matrix groups]].
  
 ===== Definition ===== ===== Definition =====
Line 14: Line 14:
 For every $N\in \N$ the **modified bistochastic group** for dimension $N$ is the subgroup of the [[wp>​general linear group]] $\mathrm{GL}(N,​\C)$ given by all bistochastic [[orthogonal group|orthogonal]] $N\times N$-matrices multiplied by a factor of $1$ or $-1$, i.e., the set For every $N\in \N$ the **modified bistochastic group** for dimension $N$ is the subgroup of the [[wp>​general linear group]] $\mathrm{GL}(N,​\C)$ given by all bistochastic [[orthogonal group|orthogonal]] $N\times N$-matrices multiplied by a factor of $1$ or $-1$, i.e., the set
 $$B_N'​\colon\hspace{-0.6em}=\{ u\in \C^{N\times N}\,\vert\, u=\overline{u},​\,​ uu^t=u^tu=I,​\,​\exists r\in\{-1,​1\}:​ \forall_{i,​j=1}^N:​ {\textstyle\sum_{\ell=1}^N} u_{i,​\ell}={\textstyle\sum_{k=1}^N} u_{k,​j}=r\},​$$ $$B_N'​\colon\hspace{-0.6em}=\{ u\in \C^{N\times N}\,\vert\, u=\overline{u},​\,​ uu^t=u^tu=I,​\,​\exists r\in\{-1,​1\}:​ \forall_{i,​j=1}^N:​ {\textstyle\sum_{\ell=1}^N} u_{i,​\ell}={\textstyle\sum_{k=1}^N} u_{k,​j}=r\},​$$
-where, if $u=(u_{i,​j})_{i,​j=1}^N$,​ then $\overline u=(u^\ast_{i,​j})_{i,​j=1}^N$ is the complex conjugate of $u$ and $u^t=(u_{j,​i})_{i,​j=1}^N$ the transpose and where $I_N$ is the identity $N\!\times \!N$-matrix.+where, if $u=(u_{i,​j})_{i,​j=1}^N$,​ then $\overline u=(\overline{u}_{i,​j})_{i,​j=1}^N$ is the complex conjugate of $u$ and $u^t=(u_{j,​i})_{i,​j=1}^N$ the transpose and where $I_N$ is the identity $N\!\times \!N$-matrix.
  
  
modified_bistochastic_group.1581664293.txt.gz ยท Last modified: 2021/11/23 11:56 (external edit)