User Tools

Site Tools


amenability

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
amenability [2019/09/16 14:27]
d.gromada created
amenability [2021/11/23 11:56] (current)
Line 6: Line 6:
  
 Let $G$ be a compact quantum group and $\Gamma:​=\hat G$ its discrete dual. The following are equivalent Let $G$ be a compact quantum group and $\Gamma:​=\hat G$ its discrete dual. The following are equivalent
-  - ...+  - There exists a //​left-invariant mean// on $\Gamma$That is, there is a state $m\in l^\infty(\Gamma)^*$ such that for all $\omega\in l^1(\Gamma)$ we have $m(\omega\otimes\id)\Delta=\omega(1)m$. 
 +  - $G$ is //quantum injective//That is, there exists a conditional expectation $E\colon B(L^2(G))\to l^\infty(\Gamma)$ with $E(L^\infty(G))=\C$ (equivalently $E(L^\infty(G))\subset Z(l^\infty(\Gamma))$) 
 +  - The counit $\epsilon$ of $\Pol G$ extends to $C_{\rm r}(G)$. 
 +  - The Haar state $h$ is faithful on $C_{\rm u}(G)$ 
 +  - The cannonical map $C_{\rm u}(G)\to C_{\rm r}(G)$ is an isomorphism
  
 If one of those equivalent conditions is satisfied, we call $\Gamma$ **amenable** and $G$ **co-amenable**. If one of those equivalent conditions is satisfied, we call $\Gamma$ **amenable** and $G$ **co-amenable**.
 +
 +==== Some special cases ====
 +
 +Suppose that $\Gamma$ is unimodular. Then $\Gamma$ is amenable if and only if $L^\infty(G)$ is injective.
 +
 +Suppose that $G$ is a compact matrix quantum group with fundamental representation $u\in M_N(C(G))$. Then $\Gamma=\hat G$ is amenable if and only if $N$ is in the spectrum of $\mathop{\rm Re}\chi\in C(G)$, where $\chi=\sum_{i=1}^N u_{ii}$. [(ref:​Ban99a)]
  
 ===== Results ===== ===== Results =====
 +
 +==== Stability results ====
 +
 +
 +  * If $H_1$ and $H_2$ are co-amenable,​ then $H_1\times H_2$ is co-amenable. (Proof: Denote by $h_1$ and $h_2$ the Haar states and by $\epsilon_1$ and $\epsilon_2$ the counits defined on $C(H_1)$ resp. $C(H_2)$. Take $A:​=C(H_1)\otimes_{\rm min}C(H_2)$. We check that $\epsilon:​=\epsilon_1\otimes\epsilon_2$ is a counit of $H_1\times H_2$ and $h:​=h_1\otimes h_2$ is the Haar state of $H_1\times H_2$. From [(ref:​Avi82)] (Appendix) it follows that $h$ is faithful on $A$.)
 +  * If a discrete quantum group $\Gamma$ is amenable than every its quantum subgroup $\Lambda$ is amenable (we have $C^*(\Lambda)\subset C^*(\Gamma)$,​ hence if $h$ is faithful on $C^*(\Gamma)$ then it is faithful also on $C^*(\Lambda)$). Moreover, $\Gamma$ is amenable if and only if $\Lambda$ is amenable and $\Gamma$ acts amenably on the homogeneous space $\Gamma/​\Lambda$. [(ref:​Cra17)]
  
 ==== Examples ==== ==== Examples ====
  
-  * $O_F^+$ for $F\in\GL(2,​\C)$ (in particular $\widehat{\mathrm{SU}}_q(2)$) [(ref:​Ban97)] +  * $\hat O_F^+$ for $F\in\GL(2,​\C)$ (in particular $\widehat{\mathrm{SU}}_q(2)$) [(ref:​Ban97)] 
-  * $O_N^*$ [(ref:​BV10)]+  * Dual of quantum automorphism group of four-dimensional C*-algebras (in particular ​$\hat S_4^+$) [(ref:​Ban99b)] 
 +  * $\hat O_N^*$ [(ref:​BV10)] 
 +  * Any finite quantum group 
 +  * Any Abelian quantum group (i.e. a dual of a compact group)
  
 ==== Non-examples ==== ==== Non-examples ====
  
   * $\hat O_F^+$ for $F\in\GL(N,​\C)$ (in particular $\hat O_N^+$) for $N>2$ [(ref:​Ban97)]   * $\hat O_F^+$ for $F\in\GL(N,​\C)$ (in particular $\hat O_N^+$) for $N>2$ [(ref:​Ban97)]
 +  * $\hat U_F^+$ for $F$ arbitrary [(ref:​Ban97)]
 +  * Dual of quantum automorphism group of $N$-dimensional C*-algebras for $N>4$ (in particular $\hat S_N^+$) [(ref:​Ban99b)]
 +  * Any countable discrete group containing a free subgroup on two generators
  
 +===== Relation with other properties =====
  
 +If $\Gamma=\hat G$ is an amenable discrete quantum group then 
 +  * $C_{\rm u}(G)$ and $C_{\rm r}(G)$ are [[wp>​Nuclear C*-algebra|nuclear]] [(ref:​BT03)]
 +  * $L^\infty(G)$ is [[wp>​Von_Neumann_algebra#​Amenable_von_Neumann_algebras|injective]] [(ref:​BT03)]
 +  * $\Gamma$ has the [[Haagerup property]] [(ref:​DFSW13)]
 +
 +A discrete quantum group $\Gamma=\hat G$ is amenable if
 +
 +===== Further reading =====
 +
 +  * Michael Brannan. //​[[https://​arxiv.org/​abs/​1605.01770|Approximation properties for locally compact quantum groups]]//, 2016.
  
 ===== References ===== ===== References =====
Line 47: Line 80:
 url       : http://​dx.doi.org/​10.1007/​s002200050237 url       : http://​dx.doi.org/​10.1007/​s002200050237
 )] )]
 +
 +[(ref:​Ban99a>>​
 +author ​   : Teodor Banica
 +title     : Representations of compact quantum groups and subfactors
 +journal ​  : Journal für die reine und angewandte Mathematik
 +year      : 1999
 +volume ​   : 509
 +pages     : 167--198
 +url       : https://​doi.org/​10.1515/​crll.1999.509.167
 +)]
 +
 +[(ref:​Ban99b>>​
 +author ​   : Teodor Banica
 +title     : Symmetries of a generic coaction
 +journal ​  : Mathematische Annalen
 +year      : 1999
 +volume ​   : 314
 +number ​   : 4
 +pages     : 763–780
 +doi       : 10.1007/​s002080050315
 +url       : https://​doi.org/​10.1007/​s002080050315
 +)]
 +
  
 [(ref:​BV10>>​ [(ref:​BV10>>​
Line 57: Line 113:
 pages     : 2137–2164 pages     : 2137–2164
 doi       : 10.5802/​aif.2579 doi       : 10.5802/​aif.2579
-url       : http://​www.numdam.org/​item/​AIF_2010__60_6_2137_0}+url       : http://​www.numdam.org/​item/​AIF_2010__60_6_2137_0
 )] )]
 +
 +
 +[(ref:​Cra17>>​
 +author ​   : Jason Crann
 +title     : On hereditary properties of quantum group amenability
 +journal ​  : Proceedings of the American Mathematical Society
 +volume ​   : 145
 +year      : 2017
 +pages     : 627–635
 +doi       : 10.1090/​proc/​13365 ​
 +url       : https://​doi.org/​10.1090/​proc/​13365
 +)]
 +
 +[(ref:​DFSW13>>​
 +author ​   : Matthew Daws, Pierre Fima, Adam Skalski, Stuart White
 +title     : The Haagerup property for locally compact quantum groups
 +journal ​  : Journal für die reine und angewandte Mathematik
 +volume ​   : 2016
 +number ​   : 711
 +pages     : 189–229
 +year      : 2013
 +doi       : 10.1515/​crelle-2013-0113
 +url       : https://​doi.org/​10.1515/​crelle-2013-0113
 +)]
 +
 +
 +[(ref:​Avi82>>​
 + ​url ​     : http://​www.jstor.org/​stable/​1998890
 + ​author ​  : Daniel Avitzour
 + ​journal ​ : Transactions of the American Mathematical Society
 + ​number ​  : 2
 + ​pages ​   : 423--435
 + ​title ​   : Free Products of C*-Algebras
 + ​volume ​  : 271
 + ​year ​    : 1982
 +}
 +
 +)]
 +
  
 ~~REFNOTES ref ~~ ~~REFNOTES ref ~~
amenability.1568644077.txt.gz · Last modified: 2021/11/23 11:56 (external edit)