User Tools

Site Tools


amenability

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
amenability [2019/10/04 12:52]
d.gromada
amenability [2021/11/23 11:56] (current)
Line 18: Line 18:
 Suppose that $\Gamma$ is unimodular. Then $\Gamma$ is amenable if and only if $L^\infty(G)$ is injective. Suppose that $\Gamma$ is unimodular. Then $\Gamma$ is amenable if and only if $L^\infty(G)$ is injective.
  
-Suppose that $G$ is a compact matrix quantum group with fundamental representation $u\in M_N(C(G))$. Then $\Gamma=\hat G$ is amenable if and only if $N$ is in the spectrum of $\mathop{\rm Re}\chi\in C(G)$, where $\chi=\sum_{i=1}^N u_{ii}$. [(ref:Ban99)]+Suppose that $G$ is a compact matrix quantum group with fundamental representation $u\in M_N(C(G))$. Then $\Gamma=\hat G$ is amenable if and only if $N$ is in the spectrum of $\mathop{\rm Re}\chi\in C(G)$, where $\chi=\sum_{i=1}^N u_{ii}$. [(ref:Ban99a)]
  
 ===== Results ===== ===== Results =====
Line 24: Line 24:
 ==== Stability results ==== ==== Stability results ====
  
-If a discrete quantum group $\Gamma$ is amenable than every its quantum subgroup is amenable. [(ref:​Cra17)]+ 
 +  * If $H_1$ and $H_2$ are co-amenable,​ then $H_1\times H_2$ is co-amenable. (Proof: Denote by $h_1$ and $h_2$ the Haar states and by $\epsilon_1$ and $\epsilon_2$ the counits defined on $C(H_1)$ resp. $C(H_2)$. Take $A:​=C(H_1)\otimes_{\rm min}C(H_2)$. We check that $\epsilon:​=\epsilon_1\otimes\epsilon_2$ is a counit of $H_1\times H_2$ and $h:​=h_1\otimes h_2$ is the Haar state of $H_1\times H_2$. From [(ref:​Avi82)] (Appendix) it follows that $h$ is faithful on $A$.) 
 +  * If a discrete quantum group $\Gamma$ is amenable than every its quantum subgroup ​$\Lambda$ ​is amenable ​(we have $C^*(\Lambda)\subset C^*(\Gamma)$,​ hence if $h$ is faithful on $C^*(\Gamma)$ then it is faithful also on $C^*(\Lambda)$). Moreover, $\Gamma$ is amenable if and only if $\Lambda$ is amenable and $\Gamma$ acts amenably on the homogeneous space $\Gamma/​\Lambda$. [(ref:​Cra17)]
  
 ==== Examples ==== ==== Examples ====
  
-  * $O_F^+$ for $F\in\GL(2,​\C)$ (in particular $\widehat{\mathrm{SU}}_q(2)$) [(ref:​Ban97)] +  * $\hat O_F^+$ for $F\in\GL(2,​\C)$ (in particular $\widehat{\mathrm{SU}}_q(2)$) [(ref:​Ban97)] 
-  * $O_N^*$ [(ref:​BV10)]+  * Dual of quantum automorphism group of four-dimensional C*-algebras (in particular ​$\hat S_4^+$) [(ref:​Ban99b)] 
 +  * $\hat O_N^*$ [(ref:​BV10)]
   * Any finite quantum group   * Any finite quantum group
   * Any Abelian quantum group (i.e. a dual of a compact group)   * Any Abelian quantum group (i.e. a dual of a compact group)
Line 36: Line 39:
  
   * $\hat O_F^+$ for $F\in\GL(N,​\C)$ (in particular $\hat O_N^+$) for $N>2$ [(ref:​Ban97)]   * $\hat O_F^+$ for $F\in\GL(N,​\C)$ (in particular $\hat O_N^+$) for $N>2$ [(ref:​Ban97)]
 +  * $\hat U_F^+$ for $F$ arbitrary [(ref:​Ban97)]
 +  * Dual of quantum automorphism group of $N$-dimensional C*-algebras for $N>4$ (in particular $\hat S_N^+$) [(ref:​Ban99b)]
   * Any countable discrete group containing a free subgroup on two generators   * Any countable discrete group containing a free subgroup on two generators
  
Line 42: Line 47:
 If $\Gamma=\hat G$ is an amenable discrete quantum group then  If $\Gamma=\hat G$ is an amenable discrete quantum group then 
   * $C_{\rm u}(G)$ and $C_{\rm r}(G)$ are [[wp>​Nuclear C*-algebra|nuclear]] [(ref:​BT03)]   * $C_{\rm u}(G)$ and $C_{\rm r}(G)$ are [[wp>​Nuclear C*-algebra|nuclear]] [(ref:​BT03)]
-  * $L^\infty(G)$ is [[wp>>​Von_Neumann_algebra#​Amenable_von_Neumann_algebras|injective]] [(ref:​BT03)]+  * $L^\infty(G)$ is [[wp>​Von_Neumann_algebra#​Amenable_von_Neumann_algebras|injective]] [(ref:BT03)] 
 +  * $\Gamma$ has the [[Haagerup property]] [(ref:​DFSW13)]
  
 A discrete quantum group $\Gamma=\hat G$ is amenable if A discrete quantum group $\Gamma=\hat G$ is amenable if
Line 75: Line 81:
 )] )]
  
-[(ref:Ban99>>+[(ref:Ban99a>>
 author ​   : Teodor Banica author ​   : Teodor Banica
 title     : Representations of compact quantum groups and subfactors title     : Representations of compact quantum groups and subfactors
Line 84: Line 90:
 url       : https://​doi.org/​10.1515/​crll.1999.509.167 url       : https://​doi.org/​10.1515/​crll.1999.509.167
 )] )]
 +
 +[(ref:​Ban99b>>​
 +author ​   : Teodor Banica
 +title     : Symmetries of a generic coaction
 +journal ​  : Mathematische Annalen
 +year      : 1999
 +volume ​   : 314
 +number ​   : 4
 +pages     : 763–780
 +doi       : 10.1007/​s002080050315
 +url       : https://​doi.org/​10.1007/​s002080050315
 +)]
 +
  
 [(ref:​BV10>>​ [(ref:​BV10>>​
Line 94: Line 113:
 pages     : 2137–2164 pages     : 2137–2164
 doi       : 10.5802/​aif.2579 doi       : 10.5802/​aif.2579
-url       : http://​www.numdam.org/​item/​AIF_2010__60_6_2137_0}+url       : http://​www.numdam.org/​item/​AIF_2010__60_6_2137_0
 )] )]
  
Line 108: Line 127:
 url       : https://​doi.org/​10.1090/​proc/​13365 url       : https://​doi.org/​10.1090/​proc/​13365
 )] )]
 +
 +[(ref:​DFSW13>>​
 +author ​   : Matthew Daws, Pierre Fima, Adam Skalski, Stuart White
 +title     : The Haagerup property for locally compact quantum groups
 +journal ​  : Journal für die reine und angewandte Mathematik
 +volume ​   : 2016
 +number ​   : 711
 +pages     : 189–229
 +year      : 2013
 +doi       : 10.1515/​crelle-2013-0113
 +url       : https://​doi.org/​10.1515/​crelle-2013-0113
 +)]
 +
 +
 +[(ref:​Avi82>>​
 + ​url ​     : http://​www.jstor.org/​stable/​1998890
 + ​author ​  : Daniel Avitzour
 + ​journal ​ : Transactions of the American Mathematical Society
 + ​number ​  : 2
 + ​pages ​   : 423--435
 + ​title ​   : Free Products of C*-Algebras
 + ​volume ​  : 271
 + ​year ​    : 1982
 +}
 +
 +)]
 +
  
 ~~REFNOTES ref ~~ ~~REFNOTES ref ~~
amenability.1570193575.txt.gz · Last modified: 2021/11/23 11:56 (external edit)