User Tools

Site Tools


category_of_all_non-crossing_partitions

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
category_of_all_non-crossing_partitions [2019/03/15 15:42]
d.gromada removed
category_of_all_non-crossing_partitions [2021/11/23 11:56] (current)
Line 1: Line 1:
-~~REDIRECT>​TemperleyLieb category~~+====== Category of non-crossing partitions ====== 
 + 
 +The **category of non-crossing partitions** is the free counterpart of the [[category of all partitions]]. It induces the corepresentation category of the [[free symmetric quantum group|free symmetric quantum groups]]. A notable subcategory is the [[temperley_lieb_category|Temperley-Lieb category]]. 
 + 
 +===== Definition ===== 
 + 
 +By the **category of non-crossing partitions** one denotes the subcategory $\mr{NC}$ of the [[category of all partitions]] $\Pscr$ whose underlying set is the //set of all non-crossing partitions//​. 
 + 
 +The term "​non-crossing"​ makes sense for partitions $\pi$ of any [[wp>​cyclic order|cyclically ordered set]] $(S,​[\cdot,​\cdot,​\cdot])$. We say that $\pi$ is **non-crossing** if we cannot find $i_1,​i_2,​j_1,​j_2\in S$ such that $i_1\sim_\pi i_2\not\sim_\pi j_1\sim_\pi j_2$ and simultaneously $[i_1,​j_1,​i_2]$ and $[j_1,​i_2,​j_2]$. ​ In particular, $S$ may be infinite under this definition. \\ 
 +Cyclic orders of a //finite// set $S$ are in one-to-one correspondence with permutations $\nu:S\to S$ of order $|S|$ by defining $[i,​i_1,​i_2]$ if and only if there exist $e_1,e_2\in \{1,​\ldots,​|S|-1\}$ with $e_1<​e_2$ such that $\nu^{e_1}(i)=i_1$ and $\nu^{e_2}(i)=i_2$.  
 + 
 +In the case of a partition $p\in \Pscr(k,l)$ for $k,l\in \{0\}\cup \N$ with $k+l>0$, i.e., a partition of $\{1,​\ldots,​k\}\sqcup \{1,​\ldots,​l\}\allowbreak\cong \{1_U,​\ldots,​k_U,​1_L,​\ldots,​l_L\}$,​ the cyclic order referenced when asking whether $p$ is "​non-crossing"​ is the one corresponding to the permutation with $j_U\mapsto (j-1)_U$ for all $j=2,​\ldots,​k$,​ with $i_L\mapsto (i+1)_L$ for all $i=1,​\ldots,​l-1$,​ with $1_U\mapsto 1_L$ if $l>0$ and $1_U\mapsto k_U$ otherwise and with $l_L\mapsto k_U$ if $k>0$ and $l_L\mapsto 1_L$ otherwise. (The same notion of being "​non-crossing"​ is obtained by referencing the cyclic order induced by the inverse of this permutation.) 
 + 
 +The **set of all non-crossing partitions** is the set of all elements of $\Pscr=\bigcup_{k,​l=0}^\infty\Pscr(k,​l)$ which are non-crossing in this sense. 
 + 
 +The set of all non-crossing partitions is the underlying set of the subcategory of $\Pscr$ generated by $\{\fourpart,​\singleton\}$.
category_of_all_non-crossing_partitions.1552664558.txt.gz · Last modified: 2021/11/23 11:56 (external edit)