User Tools

Site Tools


category_of_partitions

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
category_of_partitions [2019/03/07 11:44]
d.gromada
category_of_partitions [2021/11/23 11:56] (current)
Line 1: Line 1:
 ====== Category of partitions ====== ====== Category of partitions ======
  
-This page is about //easy// categories of partitions in the sense of Banica and Speicher. If we equip those with a linear structure, we get [[linear_category_of_partitions|linear categories of partitions]].+This page is about //easy// categories of partitions in the sense of Banica and Speicher ​[(ref:​BS09)]. If we equip those with a linear structure, we get [[linear_category_of_partitions|linear categories of partitions]].
  
  
Line 142: Line 142:
 ==== Non-crossing partitions ==== ==== Non-crossing partitions ====
  
-There are the following seven easy [[Non-crossing category of partitions|non-crossing categories]] of partitions.+There are the following seven easy [[Non-crossing category of partitions|non-crossing categories]] of partitions ​[(ref:​BS09)],​[(ref:​Web13)].
 $$NC_2=\langle\rangle\subset\Big\{\begin{matrix}\langle\singleton\otimes\singleton\rangle\subset\langle\Labac\rangle\subset\langle\singleton\rangle\\\langle\fourpart\rangle\subset\langle\fourpart,​\singleton\otimes\singleton\rangle\end{matrix}\Big\}\subset\langle\fourpart,​\singleton\rangle=NC$$ $$NC_2=\langle\rangle\subset\Big\{\begin{matrix}\langle\singleton\otimes\singleton\rangle\subset\langle\Labac\rangle\subset\langle\singleton\rangle\\\langle\fourpart\rangle\subset\langle\fourpart,​\singleton\otimes\singleton\rangle\end{matrix}\Big\}\subset\langle\fourpart,​\singleton\rangle=NC$$
  
Line 151: Line 151:
 A category of partition $\Cscr$ is called a **group category** if it contains the **crossing partition** $\crosspart$. It is called a //group category// because the crossing partition corresponds to commutativity relation. So, a quantum group corresponding to a group category is actually a group. A category of partition $\Cscr$ is called a **group category** if it contains the **crossing partition** $\crosspart$. It is called a //group category// because the crossing partition corresponds to commutativity relation. So, a quantum group corresponding to a group category is actually a group.
  
-For any group category $\Cscr$ it holds that $\Cscr':​=\Cscr\cap NC$ is a non-crossing category of partitions. Conversely, it holds that $\Cscr=\langle\Cscr',​\crosspart\rangle$. Thus, all categories with the crossing partition arise by adding the crossing to a non-crossing category. The seven non-crossing categories induce the following six categories with crossing+For any group category $\Cscr$ it holds that $\Cscr':​=\Cscr\cap NC$ is a non-crossing category of partitions. Conversely, it holds that $\Cscr=\langle\Cscr',​\crosspart\rangle$. Thus, all categories with the crossing partition arise by adding the crossing to a non-crossing category. The seven non-crossing categories induce the following six categories with crossing ​[(ref:​BS09)],​[(ref:​Web13)]
  
 $$\Pscr_2=\langle\crosspart\rangle\subset\Big\{\begin{matrix}\langle\crosspart,​\singleton\otimes\singleton\rangle\subset\langle\crosspart,​\singleton\rangle\\\langle\crosspart,​\fourpart\rangle\subset\langle\crosspart,​\fourpart,​\singleton\otimes\singleton\rangle\end{matrix}\Big\}\subset\langle\crosspart,​\fourpart,​\singleton\rangle=\Pscr$$ $$\Pscr_2=\langle\crosspart\rangle\subset\Big\{\begin{matrix}\langle\crosspart,​\singleton\otimes\singleton\rangle\subset\langle\crosspart,​\singleton\rangle\\\langle\crosspart,​\fourpart\rangle\subset\langle\crosspart,​\fourpart,​\singleton\otimes\singleton\rangle\end{matrix}\Big\}\subset\langle\crosspart,​\fourpart,​\singleton\rangle=\Pscr$$
Line 159: Line 159:
 ==== The half-liberated categories ==== ==== The half-liberated categories ====
  
-A category of partitions $\Cscr$ is called **half-liberated** if $\halflibpart\in\Cscr$,​ but $\crosspart\not\in\Cscr$. Their classification consists of the categories $\langle\halflibpart\rangle$,​ $\langle\halflibpart,​\singleton\otimes\singleton\rangle$,​ $\halflibpart,​\fourpart\rangle$ and an infinite series $\langle\halflibpart,​\fourpart,​h_s\rangle$ for $s\ge 3$. Here, $h_s$ is a partition on $2s$ points consisting of two blocks, where all odd points are in one block and all even points are in the second block (in the [[partition#​Word representation|word representation]] $h_s=(\mathsf{ab})^s=\mathsf{ab}\,​\mathsf{ab}\cdots\mathsf{ab}$).+A category of partitions $\Cscr$ is called **half-liberated** if $\halflibpart\in\Cscr$,​ but $\crosspart\not\in\Cscr$. Their classification ​[(ref:​Web13)] ​consists of the categories $\langle\halflibpart\rangle$,​ $\langle\halflibpart,​\singleton\otimes\singleton\rangle$,​ $\halflibpart,​\fourpart\rangle$ and an infinite series $\langle\halflibpart,​\fourpart,​h_s\rangle$ for $s\ge 3$. Here, $h_s$ is a partition on $2s$ points consisting of two blocks, where all odd points are in one block and all even points are in the second block (in the [[partition#​Word representation|word representation]] $h_s=(\mathsf{ab})^s=\mathsf{ab}\,​\mathsf{ab}\cdots\mathsf{ab}$).
  
 ==== The hyperoctahedral categories ==== ==== The hyperoctahedral categories ====
  
-A category of partitions $\Cscr$ is called **hyperoctahedral** if $\fourpart\in\Cscr$ but $\singleton\otimes\singleton\not\in\Cscr$.+A category of partitions $\Cscr$ is called **hyperoctahedral** if $\fourpart\in\Cscr$ but $\singleton\otimes\singleton\not\in\Cscr$. ​We have the following classification of hyperoctahedral categories [(ref:​RW16)]. 
 + 
 +If $\Paabaab\not\in\Cscr$,​ then $\Cscr$ is equal to either $\langle \pi_k\rangle$ or $\langle \pi_l\mid l\in\N\rangle$,​ where $\pi_k\in\Pscr(0,​4k)$ is a partition, whose [[partition#​word_representation|word representation]] can be written as 
 +$$\pi_k=\mathsf{a}_1\mathsf{a}_2\cdots\mathsf{a}_k\mathsf{a}_k\cdots\mathsf{a}_2\mathsf{a}_1\mathsf{a}_1\mathsf{a}_2\cdots\mathsf{a}_k\mathsf{a}_k\cdots\mathsf{a}_2\mathsf{a}_1.$$ 
 +Note that $\pi_1=\fourpart$ is a non-crossing partition. All the $\pi_k$ for $k>2$ have a crossing and the corresponding categories are pairwise distinct and also different from the above mentioned. 
 + 
 +If $\Paabaab\in\Cscr$,​ then $\Cscr$ is so-called [[Group-theoretical category|group-theoretical category]]. There is a certain normal subgroup $A\subset\Z_2^{*n}$ such that the set of all partitions in $\Cscr$ written in the [[partition#​word_representation|word representation]] using the generators of $\Z_2^{*n}$ as the alphabet coincide with $A$ [(ref:​RW14)],​ [(ref:​RW15)]. 
 + 
 +===== Further reading ===== 
 + 
 +  * Moritz Weber, //​Introduction to compact (matrix) quantum groups and Banica–Speicher (easy) quantum groups//, [[https://​doi.org/​10.1007/​s12044-017-0362-3|Proceedings – Mathematical Sciences, Vol. 127, No. 5, pp. 881–933, 2017]]. [[https://​www.ias.ac.in/​article/​fulltext/​pmsc/​127/​05/​0881-0933|Full text online.]] 
 + 
 +===== References ===== 
 + 
 +[(ref:​BS09>>​ 
 +title     : Liberation of orthogonal Lie groups 
 +journal ​  : Advances in Mathematics 
 +volume ​   : 222 
 +number ​   : 4 
 +pages     : 1461--1501 
 +year      : 2009 
 +url       : http://​dx.doi.org/​10.1016/​j.aim.2009.06.009 
 +author ​   : Teodor Banica and Roland Speicher 
 +)] 
 + 
 +[(ref:​Web13>>​ 
 +title     : On the classification of easy quantum groups 
 +journal ​  : Advances in Mathematics 
 +volume ​   : 245 
 +pages     : 500--533 
 +year      : 2013 
 +url       : http://​dx.doi.org/​10.1016/​j.aim.2013.06.019 
 +author ​   : Moritz Weber 
 +)] 
 + 
 +[(ref:​RW14>>​ 
 +author ​   : Sven Raum and Moritz Weber 
 +title     : The combinatorics of an algebraic class of easy quantum groups 
 +journal ​  : Infinite Dimensional Analysis, Quantum Probability and Related Topics 
 +volume ​   : 17 
 +number ​   : 03 
 +pages     : 1450016 
 +year      : 2014 
 +url       : http://​dx.doi.org/​10.1142/​S0219025714500167 
 +)] 
 + 
 +[(ref:​RW15>>​ 
 +author ​   : Sven Raum and Moritz Weber 
 +title     : Easy quantum groups and quantum subgroups of a semi-direct product quantum group 
 +journal ​  : Journal of Noncommutative Geometry 
 +volume ​   : 9 
 +number ​   : 4 
 +pages     : 1261--1293 
 +year      : 2015 
 +url       : http://​dx.doi.org/​10.4171/​JNCG/​223 
 +)] 
 + 
 +[(ref:​RW16>>​ 
 +author ​   : Sven Raum and Moritz Weber 
 +title     : The Full Classification of Orthogonal Easy Quantum Groups 
 +journal ​  : Communications in Mathematical Physics 
 +year      : 2016 
 +volume ​   : 341 
 +number ​   : 3 
 +pages     : 751--779 
 +url       : http://​dx.doi.org/​10.1007/​s00220-015-2537-z 
 +)] 
 + 
 +~~REFNOTES ref ~~
  
  
category_of_partitions.1551959057.txt.gz · Last modified: 2021/11/23 11:56 (external edit)