User Tools

Site Tools


compact_matrix_quantum_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
compact_matrix_quantum_group [2020/01/02 11:13]
amang [Alternative version]
compact_matrix_quantum_group [2021/11/23 11:56] (current)
Line 4: Line 4:
  
 ===== Definition ===== ===== Definition =====
-The term **compact matrix quantum group** only makes sense with reference to a certain dimension ​ $N\in \N$. Two definitions appear in the literature, the orginal one by Woronowicz from [(:​ref:​Wor87)] and an equivalent alternative formulation. ​+The term **compact matrix quantum group** ​(or **CMQG** for short) ​only makes sense with reference to a certain dimension ​ $N\in \N$. Two definitions appear in the literature, the orginal one by Woronowicz from [(:​ref:​Wor87)] and an equivalent alternative formulation. ​
  
 Both define a compact matrix quantum group $G$ as a pair $(A,u)$ of a $C^\ast$-algebra $A$ and a matrix $u$ with entries in $A$. In keeping with the general paradigm of non-commutative topology, $A$ is usually referred to as the //algebra of continuous functions// $C(G)$ //on// $G$ even if $A$ is non-commutative. Both define a compact matrix quantum group $G$ as a pair $(A,u)$ of a $C^\ast$-algebra $A$ and a matrix $u$ with entries in $A$. In keeping with the general paradigm of non-commutative topology, $A$ is usually referred to as the //algebra of continuous functions// $C(G)$ //on// $G$ even if $A$ is non-commutative.
Line 13: Line 13:
   * $u=(u_{i,​j})_{i,​j=1}^N$ is an $N\!\times\! N$-matrix of elements $\{u_{i,​j}\}_{i,​j=1}^N$ of $A$,   * $u=(u_{i,​j})_{i,​j=1}^N$ is an $N\!\times\! N$-matrix of elements $\{u_{i,​j}\}_{i,​j=1}^N$ of $A$,
   * the $\ast$-subalgebra $\mathscr{A}$ of $A$ generated by $\{u_{i,​j}\}_{i,​j=1}^N$ is dense in $A$,    * the $\ast$-subalgebra $\mathscr{A}$ of $A$ generated by $\{u_{i,​j}\}_{i,​j=1}^N$ is dense in $A$, 
-  * there exists a homomorphism $\Phi:A\to A\otimes A$ of $C^\ast$-algebras from $A$ to the minimal tensor product ​ $A\otimes A$  of $C^\ast$-algebras of $A$ with itselfwith  $\Phi(u_{i,​j})=\sum_{k=1}^N u_{i,​k}\otimes u_{k,j}$ for all $i,​j=1,​\ldots,​N$ and  +  * there exists a homomorphism $\Delta:A\to A\otimes A$ of unital ​$C^\ast$-algebras from $A$ to the minimal tensor product ​ $A\otimes A$  of $C^\ast$-algebras of $A$ with itself with  $\Delta(u_{i,​j})=\sum_{k=1}^N u_{i,​k}\otimes u_{k,j}$ for all $i,​j=1,​\ldots,​N$ and  
-  * there exists a linear antimultiplicative mapping $\kappa:​\mathscr{A}\to \mathscr{A}$ with $\kappa(\kappa(a^\ast)^\ast)=a$ for all $a\in \mathscr{A}$ and with $\sum_{k=1}^N ​\kappa(u_{i,​k})u_{k,​j}=\delta_{i,​j}I$ and $\sum_{k=1}^N u_{i,k}\kappa(u_{k,​j})=\delta_{i,​j}I$ for all $i,​j=1,​\ldots,​N$,​ where $I$ is the unit of $A$.+  * there exists a linear antimultiplicative mapping $S:​\mathscr{A}\to \mathscr{A}$ with $S(S(a^\ast)^\ast)=a$ for all $a\in \mathscr{A}$ and with $\sum_{k=1}^N ​S(u_{i,​k})u_{k,​j}=\delta_{i,​j}I$ and $\sum_{k=1}^N u_{i,k}S(u_{k,​j})=\delta_{i,​j}I$ for all $i,​j=1,​\ldots,​N$,​ where $I$ is the unit of $A$.
  
-==== Alternative ​version ​ ====+If so, then $\Delta$ and $S$ are uniquely determined by [(:​ref:​Wor87)]. They are called the //​comultiplication//​ and the //​antipode//​ (or //​coinverse//​),​ respectively. And $u$ is called the //​fundamental corepresentation (matrix)//​. 
 +==== Equivalent alternative ​version ​ ====
 A **compact** $N\!\times\! N$**-matrix quantum group** is a pair $(A,u)$ such that  A **compact** $N\!\times\! N$**-matrix quantum group** is a pair $(A,u)$ such that 
   * $A$ is a unital $C^\ast$-algebra, ​   * $A$ is a unital $C^\ast$-algebra, ​
   * $u=(u_{i,​j})_{i,​j=1}^N$ is an $N\!\times\! N$-matrix of elements $\{u_{i,​j}\}_{i,​j=1}^N$ of $A$,   * $u=(u_{i,​j})_{i,​j=1}^N$ is an $N\!\times\! N$-matrix of elements $\{u_{i,​j}\}_{i,​j=1}^N$ of $A$,
   * $A$ is generated as a $C^\ast$-algebra by $\{u_{i,​j}\}_{i,​j=1}^N$,​   * $A$ is generated as a $C^\ast$-algebra by $\{u_{i,​j}\}_{i,​j=1}^N$,​
-  * the unique linear map $\Delta:​A\to A\otimes A$ from $A$ to the minimal tensor product $A\otimes A$ of $C^\ast$-algebras with the property that $\Delta(u_{i,​j})=\sum_{k=1}^N u_{i,​k}\otimes u_{k,j}$ for all $i,​j=1,​\ldots,​N$ is a homomorphism of $C^\ast$-algebras ​+  * the unique linear map $\Delta:​A\to A\otimes A$ from $A$ to the minimal tensor product $A\otimes A$ of $C^\ast$-algebras with the property that $\Delta(u_{i,​j})=\sum_{k=1}^N u_{i,​k}\otimes u_{k,j}$ for all $i,​j=1,​\ldots,​N$ is a homomorphism of unital ​$C^\ast$-algebras ​
   * $u$ and $u^t=(u_{j,​i})_{i,​j=1}^N$ are invertible in the $C^\ast$-algebra $\C^{N\times N}\otimes A$.   * $u$ and $u^t=(u_{j,​i})_{i,​j=1}^N$ are invertible in the $C^\ast$-algebra $\C^{N\times N}\otimes A$.
 +
 +Here also, of course, $\Delta$ and //u// are referred to as the //​comultiplication//​ and //​fundamental corepresentation (matrix)//, respectively.
 +===== Compact matrix quantum groups as compact quantum groups =====
 +Given a compact matrix quantum group $(A,u)$ with comultiplication $\Delta$ the pair $(A,​\Delta)$ is a [[compact quantum group]] by [(:​ref:​Wor98)].
 +
 +===== Comparing compact matrix quantum groups =====
 +
 +Two ways of comparing compact matrix quantum groups of the __same matrix dimension__ $N\in\N$ were introduced by Woronowicz in [(:​ref:​Wor87)].
 +
 +Any two compact $N\!\times\!N$-matrix quantum groups $(A,u)$ and $(A',​u'​)$ with $u=(u_{i,​j})_{i,​j=1}^N$ and $u'​=(u'​_{i,​j})_{i,​j}^N$ are called **identical** if there exists an isomorphism of unital $C^\ast$-algebras $s:A\to A'$ with $s(u_{i,​j})=u'​_{i,​j}$ for all $i,​j=1,​\ldots,​N$.
 +
 +And we say that $(A,u)$ and $(A',​u'​)$ are **similar** if there exists an isomorphism of unital $C^\ast$-algebras $s:A\to A'$ as well as an invertible matrix $T\in \C^{N\times N}$ (a //​similarity transformation//​) such that $u'​(T\otimes I'​)=(T\otimes I'​)u_s$,​ where $u_s=(s(u_{i,​j}))_{i,​j=1}^N$ and where $I'$ is the unit of $A'$.
 +
 +
 ===== References ===== ===== References =====
  
Line 36: Line 51:
 )] )]
  
 +[( :ref:Wor98 >>
 +author ​  :​Stanisław L. Woronowicz
 +title :Compact quantum groups
 +booktitle: Quantum symmetries/​Symétries quantiques. Proceedings of the Les Houches summer school, Session LXIV, Les Houches, France, August 1st -- September 8th, 1995
 +editor ​  :​Connes,​ Alain
 +pages    :845--884
 +year     :1998
 +)]
compact_matrix_quantum_group.1577963632.txt.gz · Last modified: 2021/11/23 11:56 (external edit)