User Tools

Site Tools


free_symmetric_quantum_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
free_symmetric_quantum_group [2020/01/02 13:25]
amang [Free symmetric quantum group]
free_symmetric_quantum_group [2021/11/23 11:56] (current)
Line 1: Line 1:
 ====== Free symmetric quantum group ====== ====== Free symmetric quantum group ======
-By a **free symmetric quantum group** one means any element of the one-parameter sequence $(S_N^+)_{N\in \N}$ of [[compact matrix quantum groups]] defined by Wang in [(:​ref:​Wang98)] under the name //quantum permutation groups//. Each $S_N^+$ is a [[free_orthogonal_easy_quantum_groups|free]] counterpart of the [[symmetric group]] $S_N$ of the corresponding dimension $N$. +By a **free symmetric quantum group** one means any element of the one-parameter sequence $(S_N^+)_{N\in \N}$ of [[compact matrix quantum group|compact matrix quantum groups]] defined by Wang in [(:​ref:​Wang98)] under the name //quantum permutation groups//. Each $S_N^+$ is a [[free_orthogonal_easy_quantum_groups|free]] counterpart of the [[wp>symmetric group]] $S_N$ of the corresponding dimension $N$. 
  
 ===== Definition ===== ===== Definition =====
  
-Given $N\in \N$, the **free symmetric quantum group** $S_N^+$ (or //quantum permuation group on// $N$ //symbols//) is the [[compact matrix quantum group]] $(C(S_N^+),​u)$ where $u=(u_{i,​j})_{i,​j=1}^N$ organizes the generators $\{u_{i,​j}\}_{i,​j=1}^N$ of the (unital) [[wp>​Universal_C*-algebra|universal C*-algebra]] ​+Given $N\in \N$, the **free symmetric quantum group** $S_N^+$ (or **quantum permuation group on** $N$ **symbols**) is the [[compact matrix quantum group]] $(C(S_N^+),​u)$ where $u=(u_{i,​j})_{i,​j=1}^N$ organizes the generators $\{u_{i,​j}\}_{i,​j=1}^N$ of the (unital) [[wp>​Universal_C*-algebra|universal C*-algebra]] ​
 $$C(S_N^+)\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,​\forall_{i,​j=1}^N:​u_{i,​j}^2=u_{i,​j}=u_{i,​j}^\ast,​ \, {\textstyle\sum_{k=1}^N} u_{i,​k}={\textstyle\sum_{l=1}^N} u_{l,​j}=1\big\rangle,​$$ $$C(S_N^+)\colon\hspace{-0.66em}= C^\ast_1\big\langle\{u_{i,​j}\}_{i,​j=1}^N\big\,​\vert \,​\forall_{i,​j=1}^N:​u_{i,​j}^2=u_{i,​j}=u_{i,​j}^\ast,​ \, {\textstyle\sum_{k=1}^N} u_{i,​k}={\textstyle\sum_{l=1}^N} u_{l,​j}=1\big\rangle,​$$
-where $1$ is the unit of the universal $C^\ast$-algebra ​and where $u^t=(u_{j,​i})_{i,​j=1}^N$ is the transpose of $u$.+where $1$ is the unit of the universal $C^\ast$-algebra.
  
 +In other words, the entries $\{u_{i,​j}\}_{i,​j=1}^N$ of the fundamental corpresentation matrix $u$ of $S_N^+$ are projections,​ i.e., self-adjoint idempotents,​ and the entries of each row or column form a partition of unity, i.e., mutually orthogonal projections summing up $1$ (where the orthogonality is to mean  $u_{i,​j}u_{i,​k}=\delta_{j,​k}u_{i,​j}$ and $u_{i,​j}u_{l,​j}=\delta_{i,​l}u_{i,​j}$ for all $i,​j,​k,​l=1,​\ldots,​N$ as can be shown). Those relations are commonly summarized by saying that $u$ is a **magic unitary**.
 +
 +===== Basic Properties =====
 +
 +The fundamental corepresentation matrix $u$ of $S_N^+$ is in particular //​orthogonal//​. Hence, $S_N^+$ is a compact quantum subgroup of the [[free orthogonal quantum group]] $O_N^+$.
 +
 +If $I$ denotes the closed two-sided ideal of $C(S_N^+)$ generated by the relations $u_{i,​j}u_{k,​l}=u_{k,​l}u_{i,​j}$ for any $i,​j,​k,​l=1,​\ldots,​ N$, then $C(S_N^+)/​I$ is isomorphic to the $C^\ast$-algebra $C(S_N)$ of continuous functions on the [[wp>​symmetric group]] $S_N$, the latter interpreted as the subgroup of $\mathrm{GL}(N,​\C)$ given by all [[wp>​permutation matrix|permutation matrices]]. Hence, $S_N^+$ is a compact quantum supergroup of $S_N$.
 +
 +The free symmetric quantum groups $(S_N^+)_{N\in \N}$ are an [[easy_quantum_group|easy]] family of compact matrix quantum groups, i.e., the intertwiner spaces of their corepresentation categories are induced by a [[category of partitions]]. More precisely, it is the category $\mathrm{NC}$ of [[category_of_all_non-crossing_partitions|all non-crossing partitions]] that induces the corepresentation categories of $(S_N^+)_{N\in \N}$. The canonical generating set of partitions of $\mathrm{NC}$ is $\{\fourpart,​\singleton\}$. ​
 ===== Representation theory ===== ===== Representation theory =====
 ===== Cohomology ===== ===== Cohomology =====
free_symmetric_quantum_group.1577971511.txt.gz ยท Last modified: 2021/11/23 11:56 (external edit)