User Tools

Site Tools


glued_products

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

glued_products [2020/06/09 14:51]
d.gromada created
glued_products [2021/11/23 11:56]
Line 1: Line 1:
-====== Glued product of compact matrix quantum groups ====== 
- 
-Glued products form a less standard product construction,​ which is defined only for matrix quantum groups. It was formally defined in [(ref:​TW17)] to interpret some coloured categories of partitions in terms of compact matrix quantum groups. 
- 
-===== Definition ===== 
- 
-==== Glued tensor product ==== 
- 
-Let $G=(C(G),​u)$ and $H=(C(H),​v)$ be compact matrix quantum groups. We define the **glued tensor product** 
-$$G\tiltimes H:​=(C(G\tiltimes H),u\otimes v),$$ 
-where $C(G\tiltimes H)$ is the C*-subalgebra of $C(G)\otimes_{\rm max} C(H)$ generated by $u_{ij}v_{kl}$ -- the elements of the tensor product $u\otimes v$. 
- 
-==== Glued free product ==== 
- 
-Similarly, we define the **glued free product** 
-$$G\tilstar H:​=(C(G\tilstar H),u\otimes v),$$ 
-where $C(G\tilstar H)$ is the C*-subalgebra of $C(G)*_\C C(H)$ generated by $u_{ij}v_{kl}$. 
- 
-==== Main application:​ Complexifications ==== 
- 
-Given a compact matrix quantum group $G$, we call $G\tiltimes\hat\Z$ the **tensor complexification** of $G$, $G\tiltimes\hat\Z_k$ is the **tensor //​k//​-complexification**,​ $G\tilstar\hat\Z$ is the **free complexification** and $G\tilstar\hat\Z_k$ is the **free //​k//​-complexification** of $G$. The free complexification was studied already by Banica in [(ref:​Ban99)],​ [(ref:​Ban08)]. 
- 
-==== Remark on the distinction with ordinary products ==== 
- 
-The glued versions of the tensor and free products $G\tiltimes H$ and $G\tilstar H$ are by definition quotient quantum groups of the standard constructions $G\times H$ and $G\hatstar H$. Often it happens that the elements $u_{ij}v_{kl}$ already generate the whole C*-algebra, so actually $G\tiltimes H\simeq G\times H$ or $G\tilstar H\simeq H\hatstar H$. Even in this case, however, we should not put the equality sign here. Although the quantum groups can have the same underlying C*-algebra and hence be isomorphic, they are never identical as compact matrix quantum groups since their fundamental representations are always different -- $u\oplus v$ in the standard case and $u\otimes v$ in the glued case. 
- 
-===== Examples ===== 
- 
-==== Tensor complexification for classical groups ==== 
- 
-Let us have a look on how the definition of glued tensor product looks like for groups. Let $G$ and $H$ be two matrix groups, then we have 
-$$G\tiltimes H=\{A\otimes B\mid A\in G,B\in H\},$$ 
-where $\otimes$ denotes the Kronecker product. 
- 
-As a concrete example, consider the symmetric group $S_N$ represented by the permutation matrices and consider the cyclic group of order two $\hat\Z_2=\Z_2$ represented by a single complex number $\pm 1$. Then $S_N\tiltimes\Z_2$ consists of $N\times N$ permutation matrices multiplied by a global sign. Thus, $S_N\tiltimes\Z_2$ is actually isomorphic to $S_N\times\Z_2$. Nevertheless,​ by $S_N\times\Z_2$ we mean a different matrix realization. The ordinary product $S_N\times\Z_2$ consists of $(N+1)\times(N+1)$ matrices with block diagonal structure, where one block is formed by an $N\times N$ permutation matrix and the second block is the single number $\pm 1$. 
- 
-In general, take any cyclic group $\hat\Z_k=\Z_k$ with $k\in\N$ represented by the $k$-th roots of unity. Then for any matrix group $G$, we have 
-$$G\tiltimes\Z_k=\{{\rm e}^{2\pi ij/k}A\mid j=0,​\dots,​k-1;​\;​A\in G\}.$$ 
-We can do the same for the whole unit disk $\hat\Z=\T\subset\C$ 
-$$G\tiltimes\T=\{zA\mid z\in\T;​\;​A\in G\}.$$ 
- 
-==== Unitary quantum groups as free complexifications ==== 
- 
-It holds that $U_N^+=O_N^+\hatstar\haz\Z$ [(ref:​Ban97)] 
- 
-===== References ===== 
- 
- 
-[(ref:​TW17>>​ 
-author: ​ Pierre Tarrago and Moritz Weber 
-title: ​  ​Unitary Easy Quantum Groups: The Free Case and the Group Case 
-journal: International Mathematics Research Notices 
-volume: ​ 2017 
-number: ​ 18 
-pages: ​  ​5710–5750 
-year:    2017 
-url:     ​https://​dx.doi.org/​10.1093/​imrn/​rnw185 
-)] 
- 
-[(ref:​Ban99>>​ 
-author: ​ Teodor Banica 
-title: ​  ​Representations of compact quantum groups and subfactors 
-journal: Journal für die reine und angewandte Mathematik 
-year:    1999 
-volume: ​ 509 
-pages: ​  ​167–198 
-url:     ​http://​dx.doi.org/​10.1515/​crll.1999.509.167 
-)] 
- 
-[(ref:​Ban08>>​ 
-author: ​ Teodor Banica 
-title: ​  A Note on Free Quantum Groups 
-journal: Annales Mathématiques Blaise Pascal 
-volume: ​ 15 
-number: ​ 2 
-year:    2008 
-pages: ​  ​135–146 
-url:     ​http://​dx.doi.org/​10.5802/​ambp.243 
-)] 
- 
- 
-[(ref:​Ban97>>​ 
-author: ​ Teodor Banica 
-title: ​  Le Groupe Quantique Compact Libre U(n) 
-journal: Communications in Mathematical Physics 
-year:    1997 
-volume: ​ 190 
-number: ​ 1 
-pages: ​  ​143–172 
-url:     ​http://​dx.doi.org/​10.1007/​s002200050237 
-)] 
- 
- 
- 
  
glued_products.txt · Last modified: 2021/11/23 11:56 (external edit)