User Tools

Site Tools


unitary_easy_quantum_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
unitary_easy_quantum_group [2020/02/14 07:39]
amang created
unitary_easy_quantum_group [2021/11/23 11:56] (current)
Line 5: Line 5:
 ===== Definition ===== ===== Definition =====
  
-Informally, a [[compact matrix quantum group]] is called **easy unitary** if it is a compact quantum subgroup of the corresponding free unitary quantum group and if its corepresentation category is generated by a category of partitions. Formally, for every $N\in \N$, any compact $N\times N$-matrix quantum group $G\cong (C(G),u)$ is called an **easy unitary quantum group** if the [[corepresentation category]] $\FundRep(G)$ of $G$ has as objects the set $\bigcup_{k\in\N\cup \{0\}}\{\circ,​\bullet\}^{\times k}$ of tuples of arbitrary lengths with two distinct possible entries $\circ$ and $\bullet$ and if there exists some [[category of two-colored partitions]] $\Cscr\subseteq \Pscr^{\circ\bullet}$ such that for all $k,​\ell\in\N\cup \{0\}$ and all $c^1,​\ldots,​c^k,​c_1,​\ldots,​c_\ell\in \{\circ,​\bullet\}$ the morphism set $(c^1,​\ldots,​c^k)\to(c_1,​\ldots,​c_\ell)$ of $\FundRep(G)$ is given by +Informally, a [[compact matrix quantum group]] is called **easy unitary** if it is a compact quantum subgroup of the corresponding free unitary quantum group and if its corepresentation category is generated by a category of partitions. Formally, for every $N\in \N$, any compact $N\times N$-matrix quantum group $G\cong (C(G),u)$ is called an **easy unitary quantum group** if the [[corepresentation category]] $\FundRep(G)$ of $G$ has as objects the set $\bigcup_{k\in\N\cup \{0\}}\{\circ,​\bullet\}^{\times k}$ of tuples of arbitrary lengths with two distinct possible entries $\circ$ and $\bullet$ and if there exists some [[categories of two-colored partitions|category of two-colored partitions]] $\Cscr\subseteq \Pscr^{\circ\bullet}$ such that for all $k,​\ell\in\N\cup \{0\}$ and all $c^1,​\ldots,​c^k,​c_1,​\ldots,​c_\ell\in \{\circ,​\bullet\}$ the morphism set $(c^1,​\ldots,​c^k)\to(c_1,​\ldots,​c_\ell)$ of $\FundRep(G)$ is given by 
 $$\mathrm{Hom}((c^1,​\ldots,​c^k),​(c_1,​\ldots,​c_\ell))=\spanlin_\C(\{ T_p\,​\vert\,​ p\in \Cscr(c^1,​\ldots,​c^k,​c_1,​\ldots,​c_\ell)\}),​$$ $$\mathrm{Hom}((c^1,​\ldots,​c^k),​(c_1,​\ldots,​c_\ell))=\spanlin_\C(\{ T_p\,​\vert\,​ p\in \Cscr(c^1,​\ldots,​c^k,​c_1,​\ldots,​c_\ell)\}),​$$
 where for all $p\in \Cscr(k,l)$ the linear map $T_p:​\,​(\C^N)^{\otimes k}\to (\C^N)^{\otimes \ell}$ satisfies for all $j_1,​\ldots,​j_k\in N$, where for all $p\in \Cscr(k,l)$ the linear map $T_p:​\,​(\C^N)^{\otimes k}\to (\C^N)^{\otimes \ell}$ satisfies for all $j_1,​\ldots,​j_k\in N$,
unitary_easy_quantum_group.1581665952.txt.gz ยท Last modified: 2021/11/23 11:56 (external edit)