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Set partitions 4/31

I Part(k, l) = {Set partitions on k upper and l lower points }, k, l ≥ 0.

A (noncrossing) set partition with 6 upper and 8 lower points.

I Operations on partitions:
I involution (reflection along a horizontal line in the middle);
I rotation;
I tensor product (horizontal concatenation);
I multiplication (vertical concatenation).
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Multiplication of partitions 5/31

Multiplication of two partitions p ∈ C(2, 6), q ∈ C(6, 8) yielding p · q ∈ C(2, 8).
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Categories of partitions 6/31

I Category of partitions C = (C(k, l))k,l≥0, such that
I C(k, l) ⊂ Part(k, l);
I | ∈ C(1, 1);
I family is invariant under operations on partitions.

I Certain classes of categories of partitions have been classified
(Banica-Speicher, Weber,. . . ), for instance:
I noncrossing/ planar categories: S+ = NC, O+ = NC2,
B+ = {blocks of size one or two}, H+ = {blocks of even size},
S+′ , B+′ , B+#.

I fully crossing categories (containing simple crossing ∈ C(2, 2)):
S = Part, O = Part2, B = {blocks of size one or two},
H = {blocks of even size}, S ′ , B′ .

I halfliberated (containing but not ):
O∗,B∗#,H∗ and hyperoctahedral series.
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Diagram algebras 7/31

C = category of partitions, δ ∈ C.

I Diagram algebras of (C, δ):
I A(C,δ)(k) = {

∑
p∈C(k,k) apep ; ap ∈ C}

= complex free vector space with basis {ep ; p ∈ C(k, k)}.
I Multiplication: ep · eq = δ#erased blocksep·q.

I Many of the diagram algebras of the families from the previous slide have
special names in the literature:
I A(O+,δ)(k) = TLδ(k) Temperley-Lieb algebras (V. Jones ’83).
I A(B+,δ)(k) = Moδ(k) Motzkin algebras (Benkart-Halverson ’14).
I A(H+,δ)(k) = FCδ(k) Fuss-Catalan algebras (Bisch-Jones ’95).
I A(O,δ)(k) = Brδ(k) Brauer algebras (Wenzl ’88).
I A(B,δ)(k) = rBrδ(k) rook-Brauer algebras (delMas-Halverson ’13).
I A(S,δ)(k) = Partδ(k) Partition algebras (Jones ’94, Martin ’96).
I A(O∗,δ)(k) = wBrδ(k) walled Brauer algebras (Nikitin ’07, follows

from Banica-Vergnioux ’09).
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Diagram algebras 8/31

Diagram algebras play important roles in

I quantum groups;

I subfactors;

I knot theory;

I algebraic combinatorics (e.g. RSK algorithms);

I loop models in statistical physics:
big open questions that can be formulated purely in terms of diagram
algebras such as Razumov-Stroganov conjectures.
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If the loop parameter δ is ’generic’, we can define a direct limit C∗-algebra

A(C,δ)(∞) = lim
→
A(C,δ)(k)

since there are natural embeddings

A(C,δ)(0) ⊂ A(C,δ)(1) ⊂ A(C,δ)(2) ⊂ . . .

One can understand this tower of algebras through its branching graph or Bratteli
diagram.

I Branching graph = (directed) graded graph Γ with vertex set
⋃∞
k=0 Γk and

edges from level k to level k + 1.

I Get the following branching graph from our tower: where

I Γk = { irreducible representations π : A(C,δ)(k)→ L(Vπ)},
I number of edges from ρ ∈ Γk−1 to π ∈ Γk is the multiplicity of ρ in

decomposition of π|A(C,δ)(k−1) into irreducibles.
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Example: the Pascal graph 11/31

I Before approaching our diagram algebras, we have a look at the Pascal
graph.

I Paths on Pascal graphs are trajectories of a walker on Z starting at 0.
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Examples 12/31

I Branching graph of · · · ⊂ TLδ(k) ⊂ . . . = semi-Pascal graph (Jones):

I Branching graph of · · · ⊂ Moδ(k) ⊂ . . . (Halverson-Benkart, W.):
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Paths on these graphs have several combinatorial interpretations:

I For · · · ⊂ TLδ(k) ⊂ . . . :

I Ballot paths on N× N (allowed steps (+1,+1), (+1,−1)).
I Walks on the half-line N.

I For · · · ⊂ Moδ(k) ⊂ . . . :

I Motzkin paths on N×N (allowed steps (+1,+1), (+1,−1), (+1, 0)).
I Lazy walks on the half-line N.
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Pascalization 14/31

I All branching graphs of noncrossing or fully crossing diagram algebras can
be obtained as graphs of walks on smaller principal graphs.

Definition (Vershik-Nikitin ’06)

Let Λ be a branching graph. Denote by |λ| the level of the vertex λ in Λ. The
pascalization P(Λ) is the branching graph with

I vertex level sets P(Λ)n = {(n, λ) ; |λ| ≤ n, |λ| = n mod 2};
I an edge (n, λ)↗P(Λ) (n+ 1, λ̃) for every edge between λ and λ̃

( λ↗ λ̃ or λ̃↗ λ).

I Every branching graph Γ of a tower of diagram algebras is the pascalization
Γ = P(Λ) of a principal graph Λ.

I Paths on Γ can be identified with walks on Λ.
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I Principal graph for

· · · ⊂ A(H+,δ)(k) ⊂ A(H+,δ)(k) ⊂ . . .

and
· · · ⊂ A(B+#,δ)(k) ⊂ A(B+#,δ)(k + 1) ⊂ . . .

Fibonacci tree (H+) and derooted Fibonacci tree (B+#).
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Principal graphs for fully crossing diagram algebras 16/31

I For the diagram algebras with the simple crossing, the principal graphs are
variations of the Young graph Y, the branching graph of

{e} = S1 ⊂ S2 ⊂ S3 ⊂ . . .

The Young graph
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Branching graphs for fully crossing diagram algebras 17/31

I For the Brauer algebras (Brδ(k))k (pair partitions), the principal graph is Y
(Vershik-Nikitin);

I For (Partδ(k))k, the principal graph is Ȳ (Y, but every level is repeated
twice) (Vershik-Nikitin);

I For the rook-Brauer algebras (rBrδ(k))k (pair partitions and singletons),
paths on the branching graph are again lazy walks on Y (W. ’20);

I For the algebras (A(H,δ)(k))k, the principal graph is the coupled Young
graph (W. 20):
I vertices = pairs of Young diagrams (µ, λ);
I growth rule:

(µ, λ)↗ (µ+�, λ) or (µ, λ)↗ (µ−�, λ+�).
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Central measures 19/31

I How can you move randomly down a branching graph in such a way that
your past does not matter?  central measures.

I Let Γ be a branching graph, γ̃ ∈ Γm, γ ∈ Γn, n ≥ m. Then

dimΓ(γ̃; γ) := # paths from γ̃ to γ dimΓ(γ) = dimΓ(∅; γ).

Definition
A measure P on the space of infinite rooted paths
Ω = {∅ = ω0 ↗ ω1 ↗ ω2 . . . } ⊂

∏∞
n=0 Γn is central if for every path

γ0 = ∅ ↗ γ1 ↗ . . . , γn = γ from the root to γ, we have

P ({ω = (ω0 ↗ ω1 ↗ . . . ) ∈ Ω ; ω1 = γ1, . . . , ωn = γ}) =
P({ωn = γ})

dimΓ(γ)
.
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More on central measures 20/31

I The set of central measures is convex and, more precisely forms a Choquet
simplex, i.e. every central measure can be uniquely represented by a
probability measure over its extreme points.

I The trace simplex on A(C,δ)(∞) is homeomorphic to the simplex of central
measures on the associated branching graph Γ:
I Want to define τ = trace on A(C,δ)(∞) given central measure P;
I τ is determined by restrictions τ |A(C,δ)(k) for all k;
I Decompose A(C,δ)(k) =

⊕
γ∈Γk

MdimΓ(γ)(C) as a sum of matrix
algebras;

I Set τγ = regular trace on MdimΓ(γ)(C);
I Define τ |A(C,δ)(k) =

∑
γ∈Γk

P({ωk = γ}) τγ
dimΓ(γ) .

I Minimal boundary of branching graph Γ:

∂Γ := {extremal central measures} ∼= { extremal traces on limit algebra }
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Example: boundary of the Pascal graph 21/31

I Extremal central measures Pascal graph: Random walks on Z with
transition probabilities to jump from s to s± 1 at step n+ 1:

p((n, s), (n+ 1, s+ 1)) = p(s, s+ 1) = λ

p((n, s), (n+ 1, s− 1)) = p(s, s− 1) = 1− λ

for all s ∈ Z, where λ ∈ [0, 1].

I This is de Finetti’s theorem for {−1, 1}-valued processes.
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Example: boundary of the Young graph 22/31

I simplex of central probability measures on Young graph Y ∼= probability
measures on the Thoma simplex T .

I T = set of sequences

((αn)n≥1; (βn)n≥1) ∈ [0, 1]∞ × [0, 1]∞

such that

α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0,
∞∑
n=1

(αn + βn) ≤ 1.

I Extremal points are Dirac measures, hence T gives parametrization of
minimal boundary ∂Y.
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Minimal boundary of branching graphs of diagram algebras 23/31

I Since branching graphs Γ = P(Λ) of diagram algebras are pascalizations,
computing the minimal boundary becomes a question on (a priori
non-time-homegeneous) random walks on Λ.

I General method to compute minimal boundaries:

Theorem (Vershik-Kerov)
Let P be an extremal central measure on a branching graph Γ. For every edge
γ ↗ γ̃ with γ ∈ Γk and P-a.e. infinite path (ω0 ↗ ω1 ↗ ω2 . . . ), the sequence
dimΓ(γ̃,ωn)
dimΓ(γ,ωn) , n = 0, 1, . . . has the limit

lim
n→∞

dimΓ(γ̃, ωn)

dimΓ(γ, ωn)
= pP(γ, γ̃).
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Semi-Pascal graph 24/31

semi-Pascal graph (n.c. pair partitions, TL-algebras):

I Exact formulas for ballot paths and therefore dimΓ(γ, η) available.

I Limit limn→∞
dimΓ(γ̃,ωn)
dimΓ(γ,ωn) easy to analyse directly.

I For λ ∈ [0, 1/2], define random walk on N with transition probabilities

pλ(s, s+ 1) =

{
(1−λ)s+2−λs+2

(1−λ)s+1−λs+1 if λ < 1/2
1
2 ·

s+2
s+1 if λ = 1/2

Theorem (Wassermann ’82, W. ’20)
The extremal central measures on the semi-Pascal graph are the time-homog.
Markov chains {Mλ, λ ∈ [0, 1/2]} with transition probabilities

pλ((n, s), (n+ 1, s± 1)) = pλ(s, s± 1) for edges (n, s)↗ (n, s± 1).
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Branching graph for Motzkin algebras 25/31

I Exact formulas for Motzkin paths and therefore dimΓ(γ, η) available.

I Limit limn→∞
dimΓ(γ̃,ωn)
dimΓ(γ,ωn) harder to analyse directly.

I Can still use group action techniques of Wassermann to classify minimal
boundary as lazy random walks on N by means of return probabilities =
probability to return to the root after k steps.

I Extremal central measures are indexed by

U := {(λ1, λ2) ∈ [0, 1]× [0, 1] ; λ1 ≥ λ2, 0 ≤ λ1 + λ2 ≤ 1}.
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Branching graph for Fuss-Catalan algebras 26/31

I Recall: Branching graph Γ = P(FT) pascalization of Fibonacci tree FT;

I counting paths of length n on Γ = counting n-step walks on FT;

I Difficult for arbitrary start and end points BUT possible to count loops that
always stay below its starting vertex.
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I csn = number of downward loops of length n starting/ending at vertex with s
children where n ≥ 0, s = 1, 2.

I Define generating function Gs(z) =
∑∞

n=0 c
s
nz

n with radius of convergence
r = 4/27.

I Fix η ∈ [0, 4/27] and an end t of the Fibonacci tree.

I Ends(FT) = {ends of FT}.
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I Define random walk S(t,η) on FT with transition probabilities

p(t,η)(v, w) =

{
Gs(η)−c(v) if (v, w) is t-directed,

η ·Gs(η)c(w) else,

for edges (v, w) that do not lie on t.

I t-directed = pointing towards t; c(v) = number of children of v.

I Ask further that for every edge (v, w)

p(t,η)(v, w) · p(t,η)(w, v) = η.
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I The random walk S(t,η) induces a central measure P(t,η) on P(FT) with
transition probabilities

p̃(t,η)((n, v), (n+ 1, w)) = p(t,η)(v, w).

Theorem (W.20)

The extremal central measures on P(FT) are exactly the measures P(t,η), i.e.
the minimal boundary is

∂P(FT) = {P(t,η) ; t ∈ Ends(FT), η ∈ [0, 4/27].}

Ingredients of the proof:

I Use ergodic method and walk counting on FT to see that extremal
measures must be of the form P(t,η).

I To prove extremality, show that S(t,η) converges almost surely to t.

I Prove a law of large numbers for the times of last exit at vertices of t.
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Boundary for fully crossing diagram algebras 30/31

I Recall: branching graphs are pascalizations Γ = P(Λ) where Λ is closely
related to the Young graph Y;

I In fact: can show that the boundary of the principal graph Λ is the same as
the boundary of Y, i.e. the Thoma simplex;

I For categories of partitions S (all partitions), O (pair partitions), B (pairs
and singletons): boundary of Γ is fully supported on principal graph Λ and is
therefore also the Thoma simplex T ;

I ForH still open, but strong empirical evidence that this is true
(combinatorics much harder);

I For category of partitions O∗ dual to halfliberated orthogonal group:
boundary of branching graph Γ is T × T (follows from results of
Banica-Vergnioux and Vershik-Nikitin).

I open for other halfliberated categories (representation theory/branching
graphs unknown).
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Thanks for

listening!
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