

Assignments for the lecture on Free Probability Winter term 2018/19

## Assignment 2

Hand in on Wednesday, 31.10.18, before the lecture.

## Exercise 1 (10 points).

In this exercise we prove that free independence behaves well under successive decompositions and thus is associative. Consider a non-commutative probability space  $(\mathcal{A}, \varphi)$ . Let  $(\mathcal{A}_i)_{i \in I}$  be unital subalgebras of  $\mathcal{A}$  and, for each  $i \in I$ ,  $(\mathcal{B}_j^i)_{j \in J(i)}$  unital subalgebras of  $\mathcal{A}_i$ . Denote the restriction of  $\varphi$  to  $\mathcal{A}_i$  by  $\varphi_i$ . Note that then  $(\mathcal{A}_i, \varphi_i)$  is, for each  $i \in I$ , a non-commutative probability space on its own. Then we have:

- (i) If  $(\mathcal{A}_i)_{i \in I}$  are freely independent in  $(\mathcal{A}, \varphi)$  and, for each  $i \in I$ ,  $(\mathcal{B}_j^i)_{j \in J(i)}$  are freely independent in  $(\mathcal{A}_i, \varphi_i)$ , then all  $(\mathcal{B}_j^i)_{i \in I; j \in J(i)}$  are freely independent in  $(\mathcal{A}, \varphi)$ .
- (ii) If all  $(\mathcal{B}_{j}^{i})_{i \in I; j \in J(i)}$  are freely independent in  $(\mathcal{A}, \varphi)$  and if, for each  $i \in I$ ,  $\mathcal{A}_{i}$  is as algebra generated by all  $\mathcal{B}_{j}^{i}$  for  $j \in J(i)$ , then  $(\mathcal{A}_{i})_{i \in I}$  are freely independent in  $(\mathcal{A}, \varphi)$ .

Prove one of those two statements!

## Exercise 2 (10 points).

Let  $(\mathcal{A}, \varphi)$  be a \*-probability space. Consider a unital subalgebra  $\mathcal{B} \subset \mathcal{A}$  and a Haar unitary  $u \in \mathcal{A}$ , such that  $\{u, u^*\}$  and  $\mathcal{B}$  are free. Show that then also  $\mathcal{B}$  and  $u^*\mathcal{B}u$  are free, where

 $u^*\mathcal{B}u := \{u^*bu \mid b \in \mathcal{B}\}.$ 

Remark: A Haar unitary is a unitary  $u \in \mathcal{A}$ , i.e.  $u^*u = 1 = uu^*$ , which satisfies  $\varphi(u^k) = \delta_{0,k}$  for any  $k \in \mathbb{Z}$ .

## Exercise 3 (10 points).

Let  $(\mathcal{A}, \varphi)$  be a non-commutative probability space, and let  $a_i \in \mathcal{A}$   $(i \in I)$  be free. Consider a product  $a_{i(1)} \cdots a_{i(k)}$  with  $i(j) \in I$  for  $j = 1, \ldots, k$ . Put  $\pi := \ker(i(1), \ldots, i(k)) \in \mathcal{P}(k)$ . Show the following.

- (i) We can write  $\varphi(a_{i(1)} \cdots a_{i(k)})$  as a polynomial in the moments of the  $a_i$ , where each summand contains at least  $\#\pi$  many factors.
- (ii) If  $\pi$  is crossing then  $\varphi(a_{i(1)} \cdots a_{i(k)})$  can be written as a polynomial in moments of the  $a_i$ , where each summand contains at least  $\#\pi + 1$  many factors.