UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Felix Leid

Assignments for the lecture on Free Probability Winter term 2018/19

Assignment 3

Hand in on Monday, 7.11.18, before the lecture.

Exercise 1 (10 points). Let $f(z) = \sum_{m=0}^{\infty} C_m z^m$ be the generating function (considered as formal power series) for the numbers $\{C_m\}_{m \in \mathbb{N}_0}$, where the C_m are defined by $C_0 = 1$ and by the recursion

$$C_m = \sum_{k=1}^m C_{k-1} C_{m-k}, \qquad (m \ge 1).$$

(i) Show that

$$1 + zf(z)^2 = f(z).$$

(ii) Show that f is also the power series for

$$\frac{1-\sqrt{1-4z}}{2z}.$$

(iii) Show that

$$C_m = \frac{1}{m+1} \binom{2m}{m}.$$

Exercise 2 (10 points).

Show that the moments of the semicircular distribution are given by the Catalan numbers; i.e., for $m \in \mathbb{N}_0$

$$\frac{1}{2\pi} \int_{-2}^{+2} t^{2m} \sqrt{4 - t^2} = \frac{1}{m+1} \binom{2m}{m}.$$

Exercise 3 (10 points + 5 points^{*}).

Let \mathcal{H} be an infinite-dimensional complex Hilbert space with orthonormal basis $(e_n)_{n=0}^{\infty}$. On $B(\mathcal{H})$ we define the state

$$\varphi(a) = \langle e_0, ae_0 \rangle.$$

We consider now the creation operator $l \in B(\mathcal{H})$ which is defined by linear and continuous extension of

$$le_n = e_{n+1}.$$

please turn over

(i) Show that its adjoint ("annihilation operator") is given by extension of

$$l^* e_n = \begin{cases} e_{n-1}, & n \ge 1\\ 0, & n = 0 \end{cases}$$

- (ii) Show that the operator $x = l + l^*$ is in the *-probability space $(B(\mathcal{H}), \varphi)$ a standard semicircular element.
- (iii)* Is φ faithful on $B(\mathcal{H})$? How about φ restricted to the unital algebra generated by x?

Exercise 4 (10 points).

Let $(\mathcal{A}_n, \varphi_n)$ $(n \in \mathbb{N})$ and (\mathcal{A}, φ) be non-commutative probability spaces. Let $(b_n^{(1)})_{n \in \mathbb{N}}$ and $(b_n^{(2)})_{n \in \mathbb{N}}$ be two sequences of random variables $b_n^{(1)}, b_n^{(2)} \in \mathcal{A}_n$ and let $b^{(1)}, b^{(2)} \in \mathcal{A}$. We say that $(b_n^{(1)}, b_n^{(2)})$ converges in distribution to $(b^{(1)}, b^{(2)})$, if we have the convergence of all joint moments, i.e., if

$$\lim_{n \to \infty} \varphi_n[b_n^{(i_1)} b_n^{(i_2)} \cdots b_n^{(i_k)}] = \varphi(b^{(i_1)} b^{(i_2)} \cdots b^{(i_k)})$$

for all $k \in \mathbb{N}$ and all $i_1, \ldots, i_k \in \{1, 2\}$.

Consider now such a situation where $(b_n^{(1)}, b_n^{(2)})$ converges in distribution to $(b^{(1)}, b^{(2)})$. Assume in addition that, for each $n \in \mathbb{N}$, $b_n^{(1)}$ and $b_n^{(2)}$ are free in $(\mathcal{A}_n, \varphi_n)$. Show that then freeness goes over to the limit, i.e., that also $b^{(1)}$ and $b^{(2)}$ are free in (\mathcal{A}, φ) .