Assignments for the lecture on
Free Probability
Winter term 2018/19

Assignment 3

Hand in on Monday, 7.11.18, before the lecture.

Exercise 1 (10 points).
Let $f(z)=\sum_{m=0}^{\infty} C_{m} z^{m}$ be the generating function (considered as formal power series) for the numbers $\left\{C_{m}\right\}_{m \in \mathbb{N}_{0}}$, where the C_{m} are defined by $C_{0}=1$ and by the recursion

$$
C_{m}=\sum_{k=1}^{m} C_{k-1} C_{m-k}, \quad(m \geq 1)
$$

(i) Show that

$$
1+z f(z)^{2}=f(z)
$$

(ii) Show that f is also the power series for

$$
\frac{1-\sqrt{1-4 z}}{2 z}
$$

(iii) Show that

$$
C_{m}=\frac{1}{m+1}\binom{2 m}{m}
$$

Exercise 2 (10 points).
Show that the moments of the semicircular distribution are given by the Catalan numbers; i.e., for $m \in \mathbb{N}_{0}$

$$
\frac{1}{2 \pi} \int_{-2}^{+2} t^{2 m} \sqrt{4-t^{2}}=\frac{1}{m+1}\binom{2 m}{m}
$$

Exercise 3 (10 points +5 points*).
Let \mathcal{H} be an infinite-dimensional complex Hilbert space with orthonormal basis $\left(e_{n}\right)_{n=0}^{\infty}$. On $B(\mathcal{H})$ we define the state

$$
\varphi(a)=\left\langle e_{0}, a e_{0}\right\rangle .
$$

We consider now the creation operator $l \in B(\mathcal{H})$ which is defined by linear and continuous extension of

$$
l e_{n}=e_{n+1} .
$$

(i) Show that its adjoint ("annihilation operator") is given by extension of

$$
l^{*} e_{n}= \begin{cases}e_{n-1}, & n \geq 1 \\ 0, & n=0\end{cases}
$$

(ii) Show that the operator $x=l+l^{*}$ is in the $*$-probability space $(B(\mathcal{H}), \varphi)$ a standard semicircular element.
(iii)* Is φ faithful on $B(\mathcal{H})$? How about φ restricted to the unital algebra generated by x ?

Exercise 4 (10 points).
Let $\left(\mathcal{A}_{n}, \varphi_{n}\right)(n \in \mathbb{N})$ and (\mathcal{A}, φ) be non-commutative probability spaces. Let $\left(b_{n}^{(1)}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}^{(2)}\right)_{n \in \mathbb{N}}$ be two sequences of random variables $b_{n}^{(1)}, b_{n}^{(2)} \in \mathcal{A}_{n}$ and let $b^{(1)}, b^{(2)} \in \mathcal{A}$. We say that $\left(b_{n}^{(1)}, b_{n}^{(2)}\right)$ converges in distribution to $\left(b^{(1)}, b^{(2)}\right)$, if we have the convergence of all joint moments, i.e., if

$$
\lim _{n \rightarrow \infty} \varphi_{n}\left[b_{n}^{\left(i_{1}\right)} b_{n}^{\left(i_{2}\right)} \cdots b_{n}^{\left(i_{k}\right)}\right]=\varphi\left(b^{\left(i_{1}\right)} b^{\left(i_{2}\right)} \cdots b^{\left(i_{k}\right)}\right)
$$

for all $k \in \mathbb{N}$ and all $i_{1}, \ldots, i_{k} \in\{1,2\}$.
Consider now such a situation where $\left(b_{n}^{(1)}, b_{n}^{(2)}\right)$ converges in distribution to $\left(b^{(1)}, b^{(2)}\right)$. Assume in addition that, for each $n \in \mathbb{N}, b_{n}^{(1)}$ and $b_{n}^{(2)}$ are free in $\left(\mathcal{A}_{n}, \varphi_{n}\right)$. Show that then freeness goes over to the limit, i.e., that also $b^{(1)}$ and $b^{(2)}$ are free in (\mathcal{A}, φ).

