

Assignments for the lecture on Free Probability Winter term 2018/19

Assignment 4

Hand in on Wednesday, 14.10.18, before the lecture.

Exercise 1 (10 points).

Let (\mathcal{A}, φ) be a non-commutative probability space and let the unital subalgebras \mathcal{A}_i $(i \in I)$ be freely independent. Assume also that \mathcal{A} is generated as an algebra by the \mathcal{A}_i . Show the following: If, for each $i \in I$, $\varphi|_{\mathcal{A}_i}$ is a homomorphism on \mathcal{A}_i then φ is a homomorphism on \mathcal{A} .

Remark: The map $\varphi : \mathcal{A} \to \mathbb{C}$ is a homomorphism if it is linear and multiplicative in the sense $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in \mathcal{A}$.

Exercise 2 (10 points).

Prove that $\#NC(k) = C_k$ by showing that #NC(k) satisfies the recursion relation for the Catalan numbers.

Exercise 3 (10 points).

Define, for $n \in \mathbb{N}_0$, the Bell numbers by $B_n := \#\mathcal{P}(n)$, where $B_0 = 1$.

(i) Show that the Bell numbers satisfy the recursion:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k.$$

(ii) Show that the Bell numbers are also the moments of a Poisson distribution of parameter $\lambda = 1$, i.e., that

$$B_n = \frac{1}{e} \sum_{p=0}^{\infty} p^n \frac{1}{p!}.$$